增强地震危险性评价的盆地诱发面波参数识别

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Valeria Soto-Moncada, Fernando Lopez-Caballero
{"title":"增强地震危险性评价的盆地诱发面波参数识别","authors":"Valeria Soto-Moncada,&nbsp;Fernando Lopez-Caballero","doi":"10.1007/s10950-025-10287-y","DOIUrl":null,"url":null,"abstract":"<div><p>In earthquake engineering, the precise characterization of long-period ground motion in the form of surface waves (Love and Rayleigh type) is crucial for designing resilient structures, particularly in complex environments such as sedimentary basins. This study evaluates the efficacy of the Normalized Inner Product (NIP) method for estimating surface wave parameters using limited input data within seismic analyses conducted based on numerical simulations. The method is benchmarked against two established techniques–Six Degrees-of-Freedom Polarization Analysis (6C-Pol) and Multiple Signal Classification (MUSIC)–to evaluate its precision in parameter identification. As an example, the methodologies are first applied to analyze surface waves from synthetically generated signals and then from basin-induced surface waves coming from a simplified basin with known characteristics, employing the the spectral element code SEM3D for 3D wave propagation simulation. The results revealed that the NIP method efficiently estimated surface wave characteristics using minimal information, demonstrating its efficiency. Furthermore, due to its capacity to rapidly process large datasets, the NIP method effectively quantified basin-induced surface waves across the basin surface, offering a robust framework for a more comprehensive understanding of 3D basin effects.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"29 2","pages":"385 - 401"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10950-025-10287-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Basin-induced surface wave parameter identification for enhanced seismic hazard assessment\",\"authors\":\"Valeria Soto-Moncada,&nbsp;Fernando Lopez-Caballero\",\"doi\":\"10.1007/s10950-025-10287-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In earthquake engineering, the precise characterization of long-period ground motion in the form of surface waves (Love and Rayleigh type) is crucial for designing resilient structures, particularly in complex environments such as sedimentary basins. This study evaluates the efficacy of the Normalized Inner Product (NIP) method for estimating surface wave parameters using limited input data within seismic analyses conducted based on numerical simulations. The method is benchmarked against two established techniques–Six Degrees-of-Freedom Polarization Analysis (6C-Pol) and Multiple Signal Classification (MUSIC)–to evaluate its precision in parameter identification. As an example, the methodologies are first applied to analyze surface waves from synthetically generated signals and then from basin-induced surface waves coming from a simplified basin with known characteristics, employing the the spectral element code SEM3D for 3D wave propagation simulation. The results revealed that the NIP method efficiently estimated surface wave characteristics using minimal information, demonstrating its efficiency. Furthermore, due to its capacity to rapidly process large datasets, the NIP method effectively quantified basin-induced surface waves across the basin surface, offering a robust framework for a more comprehensive understanding of 3D basin effects.</p></div>\",\"PeriodicalId\":16994,\"journal\":{\"name\":\"Journal of Seismology\",\"volume\":\"29 2\",\"pages\":\"385 - 401\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10950-025-10287-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Seismology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10950-025-10287-y\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-025-10287-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在地震工程中,以表面波(Love和Rayleigh型)的形式精确表征长周期地面运动对于设计弹性结构至关重要,特别是在沉积盆地等复杂环境中。本研究评估了在基于数值模拟的地震分析中使用有限输入数据估计表面波参数的归一化内积(NIP)方法的有效性。将该方法与六自由度极化分析(6C-Pol)和多信号分类(MUSIC)两种已建立的技术进行了基准测试,以评估其参数识别的精度。作为一个例子,首先应用该方法分析合成信号中的表面波,然后分析来自已知特征的简化盆地的盆地诱发表面波,采用谱元代码SEM3D进行三维波传播模拟。结果表明,NIP方法利用最小信息有效地估计了表面波特征,证明了其有效性。此外,由于能够快速处理大型数据集,NIP方法有效地量化了盆地表面引起的表面波,为更全面地了解三维盆地效应提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basin-induced surface wave parameter identification for enhanced seismic hazard assessment

In earthquake engineering, the precise characterization of long-period ground motion in the form of surface waves (Love and Rayleigh type) is crucial for designing resilient structures, particularly in complex environments such as sedimentary basins. This study evaluates the efficacy of the Normalized Inner Product (NIP) method for estimating surface wave parameters using limited input data within seismic analyses conducted based on numerical simulations. The method is benchmarked against two established techniques–Six Degrees-of-Freedom Polarization Analysis (6C-Pol) and Multiple Signal Classification (MUSIC)–to evaluate its precision in parameter identification. As an example, the methodologies are first applied to analyze surface waves from synthetically generated signals and then from basin-induced surface waves coming from a simplified basin with known characteristics, employing the the spectral element code SEM3D for 3D wave propagation simulation. The results revealed that the NIP method efficiently estimated surface wave characteristics using minimal information, demonstrating its efficiency. Furthermore, due to its capacity to rapidly process large datasets, the NIP method effectively quantified basin-induced surface waves across the basin surface, offering a robust framework for a more comprehensive understanding of 3D basin effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信