{"title":"用于生物电皮肤贴片的柔性多孔微针阵列","authors":"Soichiro Tottori, Mirai Matsuura, Sae Ichinose, Haechang Cho, Tarryn Galloway, Natsuho Moriyama, Matsuhiko Nishizawa","doi":"10.1007/s10544-025-00749-y","DOIUrl":null,"url":null,"abstract":"<div><p>Microneedles with porous internal structures can provide pathways for transdermal ionic current and drug delivery by penetrating the stratum corneum of the skin. However, conventional porous microneedle arrays are typically monolithic and rigid, limiting their flexibility and adaptability to curved skin surfaces. To address the issue, a method to directly integrate an array of porous microneedles to a flexible substrate is proposed, preserving their skin penetration capability while enhancing flexibility. The resulting array conforms to curved skin surfaces while effectively reducing transdermal ionic resistance. Numerical and analytical modeling demonstrates that the limited number of needles on a flexible array is sufficient to reduce transdermal resistance. Further, an enzymatic battery is combined to create a fully organic, porous microneedle-based bioelectric skin patch that can generate stable transdermal current suitable for stimulation and drug delivery applications.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-025-00749-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Flexible porous microneedle array for bioelectric skin patch\",\"authors\":\"Soichiro Tottori, Mirai Matsuura, Sae Ichinose, Haechang Cho, Tarryn Galloway, Natsuho Moriyama, Matsuhiko Nishizawa\",\"doi\":\"10.1007/s10544-025-00749-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microneedles with porous internal structures can provide pathways for transdermal ionic current and drug delivery by penetrating the stratum corneum of the skin. However, conventional porous microneedle arrays are typically monolithic and rigid, limiting their flexibility and adaptability to curved skin surfaces. To address the issue, a method to directly integrate an array of porous microneedles to a flexible substrate is proposed, preserving their skin penetration capability while enhancing flexibility. The resulting array conforms to curved skin surfaces while effectively reducing transdermal ionic resistance. Numerical and analytical modeling demonstrates that the limited number of needles on a flexible array is sufficient to reduce transdermal resistance. Further, an enzymatic battery is combined to create a fully organic, porous microneedle-based bioelectric skin patch that can generate stable transdermal current suitable for stimulation and drug delivery applications.</p></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10544-025-00749-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-025-00749-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00749-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Flexible porous microneedle array for bioelectric skin patch
Microneedles with porous internal structures can provide pathways for transdermal ionic current and drug delivery by penetrating the stratum corneum of the skin. However, conventional porous microneedle arrays are typically monolithic and rigid, limiting their flexibility and adaptability to curved skin surfaces. To address the issue, a method to directly integrate an array of porous microneedles to a flexible substrate is proposed, preserving their skin penetration capability while enhancing flexibility. The resulting array conforms to curved skin surfaces while effectively reducing transdermal ionic resistance. Numerical and analytical modeling demonstrates that the limited number of needles on a flexible array is sufficient to reduce transdermal resistance. Further, an enzymatic battery is combined to create a fully organic, porous microneedle-based bioelectric skin patch that can generate stable transdermal current suitable for stimulation and drug delivery applications.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.