{"title":"具有广义Orlicz范数的\\(L^\\infty \\)泛函的逼近","authors":"Giacomo Bertazzoni, Michela Eleuteri, Elvira Zappale","doi":"10.1007/s10231-024-01511-6","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to deal with the asymptotics of generalized Orlicz norms when the lower growth rate tends to infinity. We generalize results proven by Bertazzoni, Harjulehto and Hästö in Journ. of Math. Anal. and Appl. (2024) for integral type energies (in generalized Orlicz spaces), considering milder convexity assumptions. <span>\\(\\Gamma \\)</span>-convergence results and related representation theorems in terms of <span>\\(L^\\infty \\)</span> functionals are proven. The convexity hypotheses are completely removed in the variable exponent setting, thus extending the results in Eleuteri-Prinari in Nonlinear Anal. Real. World Appl. (2021) and Prinari-Zappale in JOTA (2020).</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"903 - 924"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01511-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Approximation of \\\\(L^\\\\infty \\\\) functionals with generalized Orlicz norms\",\"authors\":\"Giacomo Bertazzoni, Michela Eleuteri, Elvira Zappale\",\"doi\":\"10.1007/s10231-024-01511-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to deal with the asymptotics of generalized Orlicz norms when the lower growth rate tends to infinity. We generalize results proven by Bertazzoni, Harjulehto and Hästö in Journ. of Math. Anal. and Appl. (2024) for integral type energies (in generalized Orlicz spaces), considering milder convexity assumptions. <span>\\\\(\\\\Gamma \\\\)</span>-convergence results and related representation theorems in terms of <span>\\\\(L^\\\\infty \\\\)</span> functionals are proven. The convexity hypotheses are completely removed in the variable exponent setting, thus extending the results in Eleuteri-Prinari in Nonlinear Anal. Real. World Appl. (2021) and Prinari-Zappale in JOTA (2020).</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 3\",\"pages\":\"903 - 924\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-024-01511-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01511-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01511-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Approximation of \(L^\infty \) functionals with generalized Orlicz norms
The aim of this paper is to deal with the asymptotics of generalized Orlicz norms when the lower growth rate tends to infinity. We generalize results proven by Bertazzoni, Harjulehto and Hästö in Journ. of Math. Anal. and Appl. (2024) for integral type energies (in generalized Orlicz spaces), considering milder convexity assumptions. \(\Gamma \)-convergence results and related representation theorems in terms of \(L^\infty \) functionals are proven. The convexity hypotheses are completely removed in the variable exponent setting, thus extending the results in Eleuteri-Prinari in Nonlinear Anal. Real. World Appl. (2021) and Prinari-Zappale in JOTA (2020).
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.