具有广义Orlicz范数的\(L^\infty \)泛函的逼近

IF 0.9 3区 数学 Q1 MATHEMATICS
Giacomo Bertazzoni, Michela Eleuteri, Elvira Zappale
{"title":"具有广义Orlicz范数的\\(L^\\infty \\)泛函的逼近","authors":"Giacomo Bertazzoni,&nbsp;Michela Eleuteri,&nbsp;Elvira Zappale","doi":"10.1007/s10231-024-01511-6","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to deal with the asymptotics of generalized Orlicz norms when the lower growth rate tends to infinity. We generalize results proven by Bertazzoni, Harjulehto and Hästö in Journ. of Math. Anal. and Appl. (2024) for integral type energies (in generalized Orlicz spaces), considering milder convexity assumptions. <span>\\(\\Gamma \\)</span>-convergence results and related representation theorems in terms of <span>\\(L^\\infty \\)</span> functionals are proven. The convexity hypotheses are completely removed in the variable exponent setting, thus extending the results in Eleuteri-Prinari in Nonlinear Anal. Real. World Appl. (2021) and Prinari-Zappale in JOTA (2020).</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"903 - 924"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01511-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Approximation of \\\\(L^\\\\infty \\\\) functionals with generalized Orlicz norms\",\"authors\":\"Giacomo Bertazzoni,&nbsp;Michela Eleuteri,&nbsp;Elvira Zappale\",\"doi\":\"10.1007/s10231-024-01511-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to deal with the asymptotics of generalized Orlicz norms when the lower growth rate tends to infinity. We generalize results proven by Bertazzoni, Harjulehto and Hästö in Journ. of Math. Anal. and Appl. (2024) for integral type energies (in generalized Orlicz spaces), considering milder convexity assumptions. <span>\\\\(\\\\Gamma \\\\)</span>-convergence results and related representation theorems in terms of <span>\\\\(L^\\\\infty \\\\)</span> functionals are proven. The convexity hypotheses are completely removed in the variable exponent setting, thus extending the results in Eleuteri-Prinari in Nonlinear Anal. Real. World Appl. (2021) and Prinari-Zappale in JOTA (2020).</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 3\",\"pages\":\"903 - 924\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10231-024-01511-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01511-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01511-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是处理广义Orlicz范数在低增长率趋于无穷时的渐近性。我们推广了Bertazzoni, Harjulehto和Hästö在Journ上证明的结果。数学。分析的。和苹果公司。(2024)的积分型能量(在广义Orlicz空间),考虑温和的凸性假设。 \(\Gamma \)的收敛结果及相关表示定理 \(L^\infty \) 功能被证明。在变指数情况下,凸性假设被完全去除,从而推广了非线性肛门中Eleuteri-Prinari的结果。真的。世界苹果。(2021)和priari - zappale在JOTA(2020)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of \(L^\infty \) functionals with generalized Orlicz norms

The aim of this paper is to deal with the asymptotics of generalized Orlicz norms when the lower growth rate tends to infinity. We generalize results proven by Bertazzoni, Harjulehto and Hästö in Journ. of Math. Anal. and Appl. (2024) for integral type energies (in generalized Orlicz spaces), considering milder convexity assumptions. \(\Gamma \)-convergence results and related representation theorems in terms of \(L^\infty \) functionals are proven. The convexity hypotheses are completely removed in the variable exponent setting, thus extending the results in Eleuteri-Prinari in Nonlinear Anal. Real. World Appl. (2021) and Prinari-Zappale in JOTA (2020).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信