平面稳态Navier-Stokes系统的基本速度估计及其应用

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Mikhail Korobkov, Xiao Ren
{"title":"平面稳态Navier-Stokes系统的基本速度估计及其应用","authors":"Mikhail Korobkov,&nbsp;Xiao Ren","doi":"10.1007/s00021-025-00939-x","DOIUrl":null,"url":null,"abstract":"<div><p>We consider some new estimates for general steady Navier–Stokes solutions in plane domains. According to our main result, if the domain is convex, then the difference between mean values of the velocity over two concentric circles is bounded (up to a constant factor) by the square-root of the Dirichlet integral in the annulus between the circles. The constant factor in this inequality is universal and does not depend on the ratio of the circle radii. Several applications of these formulas are discussed.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Basic Velocity Estimates for the Plane Steady-State Navier–Stokes System and Its Applications\",\"authors\":\"Mikhail Korobkov,&nbsp;Xiao Ren\",\"doi\":\"10.1007/s00021-025-00939-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider some new estimates for general steady Navier–Stokes solutions in plane domains. According to our main result, if the domain is convex, then the difference between mean values of the velocity over two concentric circles is bounded (up to a constant factor) by the square-root of the Dirichlet integral in the annulus between the circles. The constant factor in this inequality is universal and does not depend on the ratio of the circle radii. Several applications of these formulas are discussed.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-025-00939-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00939-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑平面域上一般稳定Navier-Stokes解的一些新的估计。根据我们的主要结果,如果域是凸的,那么在两个同心圆上的速度平均值之间的差是有界的(直到一个常数因子),由两个圆之间的环中的狄利克雷积分的平方根。这个不等式中的常数因子是普遍的,不依赖于圆半径的比值。讨论了这些公式的几种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Basic Velocity Estimates for the Plane Steady-State Navier–Stokes System and Its Applications

We consider some new estimates for general steady Navier–Stokes solutions in plane domains. According to our main result, if the domain is convex, then the difference between mean values of the velocity over two concentric circles is bounded (up to a constant factor) by the square-root of the Dirichlet integral in the annulus between the circles. The constant factor in this inequality is universal and does not depend on the ratio of the circle radii. Several applications of these formulas are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信