非阿贝尔非厄米系统的绝热演化与几何相

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Jing Yang, Junqi Ge
{"title":"非阿贝尔非厄米系统的绝热演化与几何相","authors":"Jing Yang,&nbsp;Junqi Ge","doi":"10.1007/s10773-025-06012-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate the adiabatic evolution and geometric phase in non-Abelian non-Hermitian systems. By analyzing the adiabatic condition for non-Hermitian systems exhibiting energy degeneracy, we derive the non-Abelian geometric phases for such systems. By studying an example, we show how the adiabatic evolution can be realized in a four-level non-reciprocal system with two degenerate eigenenergies by choosing parameters to realize real eigenenergies, slowly enough varying parameters and Hermitian non-Abelian vector potentials. By analyzing the effects of nonreciprocity on adiabatic evolution, populations on energy levels, and geometric phases, we develop a scheme to manipulate the dynamic behavior of the population, geometric phases, and adiabatic conditions by nonreciprocity. Our results provide insights into potential applications in quantum technologies that exploit non-Abelian phases and non-Hermitian characteristics.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adiabatic Evolution and Geometric Phases in a non-Abelian non-Hermitian system\",\"authors\":\"Jing Yang,&nbsp;Junqi Ge\",\"doi\":\"10.1007/s10773-025-06012-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we investigate the adiabatic evolution and geometric phase in non-Abelian non-Hermitian systems. By analyzing the adiabatic condition for non-Hermitian systems exhibiting energy degeneracy, we derive the non-Abelian geometric phases for such systems. By studying an example, we show how the adiabatic evolution can be realized in a four-level non-reciprocal system with two degenerate eigenenergies by choosing parameters to realize real eigenenergies, slowly enough varying parameters and Hermitian non-Abelian vector potentials. By analyzing the effects of nonreciprocity on adiabatic evolution, populations on energy levels, and geometric phases, we develop a scheme to manipulate the dynamic behavior of the population, geometric phases, and adiabatic conditions by nonreciprocity. Our results provide insights into potential applications in quantum technologies that exploit non-Abelian phases and non-Hermitian characteristics.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-06012-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06012-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了非阿贝尔非厄米系统的绝热演化和几何相位。通过分析具有能量简并的非厄米系统的绝热条件,导出了这类系统的非阿贝尔几何相。通过研究一个例子,我们展示了如何在一个具有两个退化特征能的四能级非互易系统中通过选择参数来实现实特征能、足够慢的变化参数和厄米非阿贝尔向量势来实现绝热演化。通过分析非互易对绝热演化、能级种群和几何相的影响,我们提出了一个通过非互易来操纵绝热条件下种群、几何相和绝热条件的动态行为的方案。我们的研究结果为利用非阿贝尔相位和非厄米特征的量子技术的潜在应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adiabatic Evolution and Geometric Phases in a non-Abelian non-Hermitian system

In this work, we investigate the adiabatic evolution and geometric phase in non-Abelian non-Hermitian systems. By analyzing the adiabatic condition for non-Hermitian systems exhibiting energy degeneracy, we derive the non-Abelian geometric phases for such systems. By studying an example, we show how the adiabatic evolution can be realized in a four-level non-reciprocal system with two degenerate eigenenergies by choosing parameters to realize real eigenenergies, slowly enough varying parameters and Hermitian non-Abelian vector potentials. By analyzing the effects of nonreciprocity on adiabatic evolution, populations on energy levels, and geometric phases, we develop a scheme to manipulate the dynamic behavior of the population, geometric phases, and adiabatic conditions by nonreciprocity. Our results provide insights into potential applications in quantum technologies that exploit non-Abelian phases and non-Hermitian characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信