J. C. de Albuquerque, L. R. S. de Assis, M. L. M. Carvalho, A. Salort
{"title":"无\\(\\Delta _2\\) -条件下分数阶Musielak-Orlicz-Sobolev模的渐近行为","authors":"J. C. de Albuquerque, L. R. S. de Assis, M. L. M. Carvalho, A. Salort","doi":"10.1007/s10231-024-01515-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the asymptotic behavior of anisotropic nonlocal nonstandard growth seminorms and modulars as the fractional parameter goes to 1 without requiring the <span>\\(\\Delta _2\\)</span>-condition on the generalized Young function or its complementary function. This provides a so-called Bourgain-Brezis-Mironescu type formula for a very general family of functionals. In the particular case of fractional Sobolev spaces with variable exponent, we point out that our proof asks for a weaker regularity of the exponent than the considered in previous articles.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"983 - 1002"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of fractional Musielak–Orlicz–Sobolev modulars without the \\\\(\\\\Delta _2\\\\)-condition\",\"authors\":\"J. C. de Albuquerque, L. R. S. de Assis, M. L. M. Carvalho, A. Salort\",\"doi\":\"10.1007/s10231-024-01515-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we study the asymptotic behavior of anisotropic nonlocal nonstandard growth seminorms and modulars as the fractional parameter goes to 1 without requiring the <span>\\\\(\\\\Delta _2\\\\)</span>-condition on the generalized Young function or its complementary function. This provides a so-called Bourgain-Brezis-Mironescu type formula for a very general family of functionals. In the particular case of fractional Sobolev spaces with variable exponent, we point out that our proof asks for a weaker regularity of the exponent than the considered in previous articles.\\n</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 3\",\"pages\":\"983 - 1002\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01515-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01515-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic behavior of fractional Musielak–Orlicz–Sobolev modulars without the \(\Delta _2\)-condition
In this article, we study the asymptotic behavior of anisotropic nonlocal nonstandard growth seminorms and modulars as the fractional parameter goes to 1 without requiring the \(\Delta _2\)-condition on the generalized Young function or its complementary function. This provides a so-called Bourgain-Brezis-Mironescu type formula for a very general family of functionals. In the particular case of fractional Sobolev spaces with variable exponent, we point out that our proof asks for a weaker regularity of the exponent than the considered in previous articles.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.