圆弧单元标准有理绝对节点坐标公式的参数化方法

IF 2.3 3区 工程技术 Q2 MECHANICS
Wenshuai Zhang, Manyu Shi, Manlan Liu, Peng Lan
{"title":"圆弧单元标准有理绝对节点坐标公式的参数化方法","authors":"Wenshuai Zhang,&nbsp;Manyu Shi,&nbsp;Manlan Liu,&nbsp;Peng Lan","doi":"10.1007/s00707-025-04288-8","DOIUrl":null,"url":null,"abstract":"<div><p>In engineering applications, connecting free-form curves with circular arcs is often necessary, emphasizing the significance of a standardized representation for circular arcs. This study proposes a novel method for constructing a parametric standard Rational absolute nodal coordinate formulation (RANCF) circular arc element based on the positional coordinates of its geometric configuration. The proposed method derives parameterized expressions for the nodal coordinates and weight vectors of the element. By adjusting the parameter value, the nodal coordinates and corresponding weights of the element can be flexibly modified, allowing the same geometric configuration of RANCF circular arc elements to be represented with different parameters. The primary distinction between RANCF circular arc elements with different parameters lies in the varying mapping relationships between the parameter space and the physical space. This mapping relationship can be adjusted through rational parameter transformations, enabling the conversion of different parameterized RANCF circular arc elements that represent the same geometric configuration. To evaluate the quality of different parameterized standard RANCF elements, we propose a criterion based on minimizing the cumulative gradient difference. The findings show that when the parameter value equals 1, corresponding to chord length parameterization, the standard RANCF circular arc element exhibits optimal performance. Numerical examples are provided to compare the performance of various parametric standard RANCF circular arc elements, demonstrating that convergence can be achieved using fewer optimized parametric elements.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"236 5","pages":"2845 - 2864"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterized method for standard rational absolute nodal coordinate formulation circular arc element\",\"authors\":\"Wenshuai Zhang,&nbsp;Manyu Shi,&nbsp;Manlan Liu,&nbsp;Peng Lan\",\"doi\":\"10.1007/s00707-025-04288-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In engineering applications, connecting free-form curves with circular arcs is often necessary, emphasizing the significance of a standardized representation for circular arcs. This study proposes a novel method for constructing a parametric standard Rational absolute nodal coordinate formulation (RANCF) circular arc element based on the positional coordinates of its geometric configuration. The proposed method derives parameterized expressions for the nodal coordinates and weight vectors of the element. By adjusting the parameter value, the nodal coordinates and corresponding weights of the element can be flexibly modified, allowing the same geometric configuration of RANCF circular arc elements to be represented with different parameters. The primary distinction between RANCF circular arc elements with different parameters lies in the varying mapping relationships between the parameter space and the physical space. This mapping relationship can be adjusted through rational parameter transformations, enabling the conversion of different parameterized RANCF circular arc elements that represent the same geometric configuration. To evaluate the quality of different parameterized standard RANCF elements, we propose a criterion based on minimizing the cumulative gradient difference. The findings show that when the parameter value equals 1, corresponding to chord length parameterization, the standard RANCF circular arc element exhibits optimal performance. Numerical examples are provided to compare the performance of various parametric standard RANCF circular arc elements, demonstrating that convergence can be achieved using fewer optimized parametric elements.</p></div>\",\"PeriodicalId\":456,\"journal\":{\"name\":\"Acta Mechanica\",\"volume\":\"236 5\",\"pages\":\"2845 - 2864\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00707-025-04288-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-025-04288-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在工程应用中,经常需要将自由曲线与圆弧连接起来,这强调了圆弧标准化表示的重要性。提出了一种基于圆弧单元几何构型的位置坐标构造参数标准有理绝对节点坐标公式圆弧单元的新方法。该方法导出了单元节点坐标和权向量的参数化表达式。通过调整参数值,可以灵活地修改单元的节点坐标和相应的权值,使相同的RANCF圆弧单元几何构型可以用不同的参数表示。不同参数的RANCF圆弧元之间的主要区别在于参数空间与物理空间的映射关系不同。这种映射关系可以通过合理的参数转换来调整,从而实现不同参数化的RANCF圆弧元素之间的转换,这些元素表示相同的几何构型。为了评估不同参数化标准RANCF元素的质量,我们提出了一个基于最小化累积梯度差的准则。结果表明,当参数值为1时,对应弦长参数化,标准RANCF圆弧单元表现出最佳性能。数值算例比较了不同参数标准RANCF圆弧单元的性能,证明了使用较少的优化参数单元可以实现收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameterized method for standard rational absolute nodal coordinate formulation circular arc element

In engineering applications, connecting free-form curves with circular arcs is often necessary, emphasizing the significance of a standardized representation for circular arcs. This study proposes a novel method for constructing a parametric standard Rational absolute nodal coordinate formulation (RANCF) circular arc element based on the positional coordinates of its geometric configuration. The proposed method derives parameterized expressions for the nodal coordinates and weight vectors of the element. By adjusting the parameter value, the nodal coordinates and corresponding weights of the element can be flexibly modified, allowing the same geometric configuration of RANCF circular arc elements to be represented with different parameters. The primary distinction between RANCF circular arc elements with different parameters lies in the varying mapping relationships between the parameter space and the physical space. This mapping relationship can be adjusted through rational parameter transformations, enabling the conversion of different parameterized RANCF circular arc elements that represent the same geometric configuration. To evaluate the quality of different parameterized standard RANCF elements, we propose a criterion based on minimizing the cumulative gradient difference. The findings show that when the parameter value equals 1, corresponding to chord length parameterization, the standard RANCF circular arc element exhibits optimal performance. Numerical examples are provided to compare the performance of various parametric standard RANCF circular arc elements, demonstrating that convergence can be achieved using fewer optimized parametric elements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica
Acta Mechanica 物理-力学
CiteScore
4.30
自引率
14.80%
发文量
292
审稿时长
6.9 months
期刊介绍: Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信