赋予双不变度规\(\mathbf {SU_n}\)的一些黎曼性质

IF 1 3区 数学 Q1 MATHEMATICS
Donato Pertici, Alberto Dolcetti
{"title":"赋予双不变度规\\(\\mathbf {SU_n}\\)的一些黎曼性质","authors":"Donato Pertici,&nbsp;Alberto Dolcetti","doi":"10.1007/s10231-024-01516-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study some properties of <span>\\(SU_n\\)</span> endowed with the Frobenius metric <span>\\(\\phi \\)</span>, which is, up to a positive constant multiple, the unique bi-invariant Riemannian metric on <span>\\(SU_n\\)</span>. In particular we express the distance between <span>\\(P, Q \\in SU_n\\)</span> in terms of eigenvalues of <span>\\(P^*Q\\)</span>; we compute the diameter of <span>\\((SU_n, \\phi )\\)</span> and we determine its diametral pairs; we prove that the set of all minimizing geodesic segments with endpoints <i>P</i>, <i>Q</i> can be parametrized by means of a compact connected submanifold of <span>\\(\\mathfrak {su}_n\\)</span>, diffeomorphic to a suitable complex Grassmannian depending on <i>P</i> and <i>Q</i>.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"1003 - 1017"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Riemannian properties of \\\\(\\\\mathbf {SU_n}\\\\) endowed with a bi-invariant metric\",\"authors\":\"Donato Pertici,&nbsp;Alberto Dolcetti\",\"doi\":\"10.1007/s10231-024-01516-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study some properties of <span>\\\\(SU_n\\\\)</span> endowed with the Frobenius metric <span>\\\\(\\\\phi \\\\)</span>, which is, up to a positive constant multiple, the unique bi-invariant Riemannian metric on <span>\\\\(SU_n\\\\)</span>. In particular we express the distance between <span>\\\\(P, Q \\\\in SU_n\\\\)</span> in terms of eigenvalues of <span>\\\\(P^*Q\\\\)</span>; we compute the diameter of <span>\\\\((SU_n, \\\\phi )\\\\)</span> and we determine its diametral pairs; we prove that the set of all minimizing geodesic segments with endpoints <i>P</i>, <i>Q</i> can be parametrized by means of a compact connected submanifold of <span>\\\\(\\\\mathfrak {su}_n\\\\)</span>, diffeomorphic to a suitable complex Grassmannian depending on <i>P</i> and <i>Q</i>.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 3\",\"pages\":\"1003 - 1017\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01516-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01516-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了\(SU_n\)上具有Frobenius度规\(\phi \)的一些性质,该度规是\(SU_n\)上唯一的双不变黎曼度规,直到一个正常数倍。特别地,我们用\(P^*Q\)的特征值表示\(P, Q \in SU_n\)之间的距离;我们计算\((SU_n, \phi )\)的直径并确定它的直径对;我们证明了端点为P, Q的所有极小测地线线段的集合可以用紧连通子流形\(\mathfrak {su}_n\)来参数化,该子流形依P和Q微分同构于一个合适的复Grassmannian。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Riemannian properties of \(\mathbf {SU_n}\) endowed with a bi-invariant metric

We study some properties of \(SU_n\) endowed with the Frobenius metric \(\phi \), which is, up to a positive constant multiple, the unique bi-invariant Riemannian metric on \(SU_n\). In particular we express the distance between \(P, Q \in SU_n\) in terms of eigenvalues of \(P^*Q\); we compute the diameter of \((SU_n, \phi )\) and we determine its diametral pairs; we prove that the set of all minimizing geodesic segments with endpoints P, Q can be parametrized by means of a compact connected submanifold of \(\mathfrak {su}_n\), diffeomorphic to a suitable complex Grassmannian depending on P and Q.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信