具有次临界非线性的旋旋算子Hamilton系统解的存在性

IF 1 3区 数学 Q1 MATHEMATICS
Zhijie Chen, Zhen Song, Zhaoji Zhang
{"title":"具有次临界非线性的旋旋算子Hamilton系统解的存在性","authors":"Zhijie Chen,&nbsp;Zhen Song,&nbsp;Zhaoji Zhang","doi":"10.1007/s10231-024-01525-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the following Hamilton system for the curl–curl operator </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\nabla \\times (\\nabla \\times U_1)=f_2(x,U_2) \\quad &amp; \\hbox {in}\\;\\Omega , \\\\ \\nabla \\times (\\nabla \\times U_2)=f_1(x,U_1) \\quad &amp; \\hbox {in}\\;\\Omega , \\\\ \\nu \\times U_1=\\nu \\times U_2=0 \\ \\ &amp; \\hbox {on}\\;\\partial \\Omega \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>in a simply connected bounded Lipschitz domain <span>\\(\\Omega \\subset {\\mathbb {R}}^3\\)</span> with connected boundary, where <span>\\(\\nabla \\times \\)</span> denotes the curl operator in <span>\\({\\mathbb {R}}^3\\)</span> and <span>\\(\\nu :\\partial \\Omega \\rightarrow {\\mathbb {R}}^3\\)</span> is the exterior normal. By using some variational approaches inspired by Szulkin and Weth (J Funct Anal 257(12):3802–3822, 2009) and Bartsch and Mederski (Arch Ration Mech Anal 215(1):283–306, 2015), we show that there exists a ground state solution for the above system if <span>\\(f_1\\)</span> and <span>\\(f_2\\)</span> are both subcritical and satisfy some other growth conditions and convexity conditions. Furthermore, if the nonlinearities are both even, we establish the existence of infinitely many solutions. Finally, we prove the existence of two types of cylindrically symmetric solutions under some symmetry conditions on the domain and the nonlinearities.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"1199 - 1227"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions to Hamilton systems for the curl–curl operator with subcritical nonlinearities\",\"authors\":\"Zhijie Chen,&nbsp;Zhen Song,&nbsp;Zhaoji Zhang\",\"doi\":\"10.1007/s10231-024-01525-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with the following Hamilton system for the curl–curl operator </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} \\\\nabla \\\\times (\\\\nabla \\\\times U_1)=f_2(x,U_2) \\\\quad &amp; \\\\hbox {in}\\\\;\\\\Omega , \\\\\\\\ \\\\nabla \\\\times (\\\\nabla \\\\times U_2)=f_1(x,U_1) \\\\quad &amp; \\\\hbox {in}\\\\;\\\\Omega , \\\\\\\\ \\\\nu \\\\times U_1=\\\\nu \\\\times U_2=0 \\\\ \\\\ &amp; \\\\hbox {on}\\\\;\\\\partial \\\\Omega \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>in a simply connected bounded Lipschitz domain <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb {R}}^3\\\\)</span> with connected boundary, where <span>\\\\(\\\\nabla \\\\times \\\\)</span> denotes the curl operator in <span>\\\\({\\\\mathbb {R}}^3\\\\)</span> and <span>\\\\(\\\\nu :\\\\partial \\\\Omega \\\\rightarrow {\\\\mathbb {R}}^3\\\\)</span> is the exterior normal. By using some variational approaches inspired by Szulkin and Weth (J Funct Anal 257(12):3802–3822, 2009) and Bartsch and Mederski (Arch Ration Mech Anal 215(1):283–306, 2015), we show that there exists a ground state solution for the above system if <span>\\\\(f_1\\\\)</span> and <span>\\\\(f_2\\\\)</span> are both subcritical and satisfy some other growth conditions and convexity conditions. Furthermore, if the nonlinearities are both even, we establish the existence of infinitely many solutions. Finally, we prove the existence of two types of cylindrically symmetric solutions under some symmetry conditions on the domain and the nonlinearities.\\n</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 3\",\"pages\":\"1199 - 1227\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01525-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01525-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有连通边界的单连通有界Lipschitz域\(\Omega \subset {\mathbb {R}}^3\)上旋旋算子$$\begin{aligned} {\left\{ \begin{array}{ll} \nabla \times (\nabla \times U_1)=f_2(x,U_2) \quad & \hbox {in}\;\Omega , \\ \nabla \times (\nabla \times U_2)=f_1(x,U_1) \quad & \hbox {in}\;\Omega , \\ \nu \times U_1=\nu \times U_2=0 \ \ & \hbox {on}\;\partial \Omega \end{array}\right. } \end{aligned}$$的Hamilton系统,其中\(\nabla \times \)表示\({\mathbb {R}}^3\)中的旋旋算子,\(\nu :\partial \Omega \rightarrow {\mathbb {R}}^3\)为外法线。通过使用Szulkin和Weth (J Funct Anal 257(12): 3802-3822, 2009)和Bartsch和Mederski (Arch Ration Mech Anal 215(1): 283-306, 2015)启发的一些变分方法,我们证明了如果\(f_1\)和\(f_2\)都是亚临界的,并且满足其他一些增长条件和convality条件,则存在上述系统的基态解。进一步,如果非线性都是偶的,我们建立了无穷多个解的存在性。最后,我们证明了两类圆柱对称解在定义域和非线性条件下的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of solutions to Hamilton systems for the curl–curl operator with subcritical nonlinearities

This paper is concerned with the following Hamilton system for the curl–curl operator

$$\begin{aligned} {\left\{ \begin{array}{ll} \nabla \times (\nabla \times U_1)=f_2(x,U_2) \quad & \hbox {in}\;\Omega , \\ \nabla \times (\nabla \times U_2)=f_1(x,U_1) \quad & \hbox {in}\;\Omega , \\ \nu \times U_1=\nu \times U_2=0 \ \ & \hbox {on}\;\partial \Omega \end{array}\right. } \end{aligned}$$

in a simply connected bounded Lipschitz domain \(\Omega \subset {\mathbb {R}}^3\) with connected boundary, where \(\nabla \times \) denotes the curl operator in \({\mathbb {R}}^3\) and \(\nu :\partial \Omega \rightarrow {\mathbb {R}}^3\) is the exterior normal. By using some variational approaches inspired by Szulkin and Weth (J Funct Anal 257(12):3802–3822, 2009) and Bartsch and Mederski (Arch Ration Mech Anal 215(1):283–306, 2015), we show that there exists a ground state solution for the above system if \(f_1\) and \(f_2\) are both subcritical and satisfy some other growth conditions and convexity conditions. Furthermore, if the nonlinearities are both even, we establish the existence of infinitely many solutions. Finally, we prove the existence of two types of cylindrically symmetric solutions under some symmetry conditions on the domain and the nonlinearities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信