优化第一罗宾特征值在外部域:球的局部最大化性质

IF 1 3区 数学 Q1 MATHEMATICS
Lukas Bundrock
{"title":"优化第一罗宾特征值在外部域:球的局部最大化性质","authors":"Lukas Bundrock","doi":"10.1007/s10231-024-01520-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper builds upon the work of D. Krejčiřík and V. Lotoreichik, focusing on optimizing the lowest point of the spectrum of the Laplacian in the exterior of a compact set under attractive Robin boundary conditions. We characterize the discrete spectrum of the Laplace operator under Robin boundary conditions using a harmonic Steklov eigenvalue problem in exterior domains. Assuming the lowest point of the spectrum is a discrete eigenvalue, we show that the exterior of a ball is a local maximizer among nearly spherical domains with prescribed measure in any dimension. However, generally, it is not the global maximizer of the first Robin eigenvalue under either prescribed measure or prescribed perimeter.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"1095 - 1117"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the first Robin Eigenvalue in exterior domains: the ball’s local maximizing property\",\"authors\":\"Lukas Bundrock\",\"doi\":\"10.1007/s10231-024-01520-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper builds upon the work of D. Krejčiřík and V. Lotoreichik, focusing on optimizing the lowest point of the spectrum of the Laplacian in the exterior of a compact set under attractive Robin boundary conditions. We characterize the discrete spectrum of the Laplace operator under Robin boundary conditions using a harmonic Steklov eigenvalue problem in exterior domains. Assuming the lowest point of the spectrum is a discrete eigenvalue, we show that the exterior of a ball is a local maximizer among nearly spherical domains with prescribed measure in any dimension. However, generally, it is not the global maximizer of the first Robin eigenvalue under either prescribed measure or prescribed perimeter.\\n</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 3\",\"pages\":\"1095 - 1117\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01520-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01520-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在D. Krejčiřík和V. Lotoreichik的基础上,重点研究了在吸引Robin边界条件下紧集外部拉普拉斯算子谱最低点的优化问题。利用外域的调和Steklov特征值问题刻画了Robin边界条件下拉普拉斯算子的离散谱。假设谱的最低点是一个离散的特征值,我们证明了球的外部在任意维数具有规定测度的近球面域中是一个局部最大化器。然而,一般来说,无论是在规定的测度下还是在规定的周长下,它都不是第一个Robin特征值的全局最大化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the first Robin Eigenvalue in exterior domains: the ball’s local maximizing property

This paper builds upon the work of D. Krejčiřík and V. Lotoreichik, focusing on optimizing the lowest point of the spectrum of the Laplacian in the exterior of a compact set under attractive Robin boundary conditions. We characterize the discrete spectrum of the Laplace operator under Robin boundary conditions using a harmonic Steklov eigenvalue problem in exterior domains. Assuming the lowest point of the spectrum is a discrete eigenvalue, we show that the exterior of a ball is a local maximizer among nearly spherical domains with prescribed measure in any dimension. However, generally, it is not the global maximizer of the first Robin eigenvalue under either prescribed measure or prescribed perimeter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信