Damek-Ricci空间上具有径向初始数据的Schrödinger算子解的正则性和点收敛性

IF 1 3区 数学 Q1 MATHEMATICS
Utsav Dewan
{"title":"Damek-Ricci空间上具有径向初始数据的Schrödinger算子解的正则性和点收敛性","authors":"Utsav Dewan","doi":"10.1007/s10231-024-01523-2","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most celebrated problems in Euclidean Harmonic analysis is the Carleson’s problem: determining the optimal regularity of the initial condition <i>f</i> of the Schrödinger equation given by </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} i\\frac{\\partial u}{\\partial t} =\\Delta u\\,,\\, (x,t) \\in {\\mathbb {R}}^n \\times {\\mathbb {R}} \\\\ u(0,\\cdot )=f\\,, \\text { on } {\\mathbb {R}}^n \\,, \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>in terms of the index <span>\\(\\alpha \\)</span> such that <i>f</i> belongs to the inhomogeneous Sobolev space <span>\\(H^\\alpha ({\\mathbb {R}}^n)\\)</span>, so that the solution of the Schrödinger operator <i>u</i> converges pointwise to <i>f</i>, <span>\\(\\displaystyle \\lim _{t \\rightarrow 0+} u(x,t)=f(x)\\)</span>, almost everywhere. In this article, we consider the Carleson’s problem for the Schrödinger equation with radial initial data on Damek-Ricci spaces and obtain the sharp bound up to the endpoint <span>\\(\\alpha \\ge 1/4\\)</span>, which agrees with the classical Euclidean case.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 3","pages":"1161 - 1182"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity and pointwise convergence of solutions of the Schrödinger operator with radial initial data on Damek-Ricci spaces\",\"authors\":\"Utsav Dewan\",\"doi\":\"10.1007/s10231-024-01523-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the most celebrated problems in Euclidean Harmonic analysis is the Carleson’s problem: determining the optimal regularity of the initial condition <i>f</i> of the Schrödinger equation given by </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} i\\\\frac{\\\\partial u}{\\\\partial t} =\\\\Delta u\\\\,,\\\\, (x,t) \\\\in {\\\\mathbb {R}}^n \\\\times {\\\\mathbb {R}} \\\\\\\\ u(0,\\\\cdot )=f\\\\,, \\\\text { on } {\\\\mathbb {R}}^n \\\\,, \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>in terms of the index <span>\\\\(\\\\alpha \\\\)</span> such that <i>f</i> belongs to the inhomogeneous Sobolev space <span>\\\\(H^\\\\alpha ({\\\\mathbb {R}}^n)\\\\)</span>, so that the solution of the Schrödinger operator <i>u</i> converges pointwise to <i>f</i>, <span>\\\\(\\\\displaystyle \\\\lim _{t \\\\rightarrow 0+} u(x,t)=f(x)\\\\)</span>, almost everywhere. In this article, we consider the Carleson’s problem for the Schrödinger equation with radial initial data on Damek-Ricci spaces and obtain the sharp bound up to the endpoint <span>\\\\(\\\\alpha \\\\ge 1/4\\\\)</span>, which agrees with the classical Euclidean case.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 3\",\"pages\":\"1161 - 1182\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01523-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01523-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

欧几里得调和分析中最著名的问题之一是Carleson问题:用指标\(\alpha \)确定$$\begin{aligned} {\left\{ \begin{array}{ll} i\frac{\partial u}{\partial t} =\Delta u\,,\, (x,t) \in {\mathbb {R}}^n \times {\mathbb {R}} \\ u(0,\cdot )=f\,, \text { on } {\mathbb {R}}^n \,, \end{array}\right. } \end{aligned}$$给出的Schrödinger方程的初始条件f的最优正则性,使f属于非齐次Sobolev空间\(H^\alpha ({\mathbb {R}}^n)\),从而使Schrödinger算子u的解几乎处处收敛于f, \(\displaystyle \lim _{t \rightarrow 0+} u(x,t)=f(x)\)。本文考虑了Damek-Ricci空间上具有径向初始数据的Schrödinger方程的Carleson问题,得到了直至端点\(\alpha \ge 1/4\)的锐界,它与经典欧几里得情形一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity and pointwise convergence of solutions of the Schrödinger operator with radial initial data on Damek-Ricci spaces

One of the most celebrated problems in Euclidean Harmonic analysis is the Carleson’s problem: determining the optimal regularity of the initial condition f of the Schrödinger equation given by

$$\begin{aligned} {\left\{ \begin{array}{ll} i\frac{\partial u}{\partial t} =\Delta u\,,\, (x,t) \in {\mathbb {R}}^n \times {\mathbb {R}} \\ u(0,\cdot )=f\,, \text { on } {\mathbb {R}}^n \,, \end{array}\right. } \end{aligned}$$

in terms of the index \(\alpha \) such that f belongs to the inhomogeneous Sobolev space \(H^\alpha ({\mathbb {R}}^n)\), so that the solution of the Schrödinger operator u converges pointwise to f, \(\displaystyle \lim _{t \rightarrow 0+} u(x,t)=f(x)\), almost everywhere. In this article, we consider the Carleson’s problem for the Schrödinger equation with radial initial data on Damek-Ricci spaces and obtain the sharp bound up to the endpoint \(\alpha \ge 1/4\), which agrees with the classical Euclidean case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信