广义傅里叶变换对码

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS
Yaping Lv;Suihua Cai;Xiao Ma
{"title":"广义傅里叶变换对码","authors":"Yaping Lv;Suihua Cai;Xiao Ma","doi":"10.1109/LCOMM.2025.3547330","DOIUrl":null,"url":null,"abstract":"This letter is concerned with Fourier transform pair (FTP) codes over finite fields. Given any element of order n in a finite field, we can construct an FTP code with length <inline-formula> <tex-math>$2n$ </tex-math></inline-formula>, dimension n, and minimum distance at least <inline-formula> <tex-math>$2\\sqrt {n}$ </tex-math></inline-formula>. Distinguishingly, an FTP code defined with any element (if it exists) of order 2, 3 or 5 in a finite field is a maximum distance separable code. In this letter, we extend the FTP codes to generalized FTP (GFTP) codes. To show the superiority of the GFTP codes over the FTP codes, we compute the binary weight spectra of the GFTP codes, approaching more close than the FTP codes to that of the random codes. We also apply the ordered statistic decoding with local constraints (LC-OSD) algorithm to the binary image of GFTP codes. Numerical results show that the GFTP codes perform better than the FTP codes as the code length increases. Numerical results also show that GFTP codes are comparable with existing codes of the same code rate and similar code length.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 5","pages":"933-937"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Fourier Transform Pair Codes\",\"authors\":\"Yaping Lv;Suihua Cai;Xiao Ma\",\"doi\":\"10.1109/LCOMM.2025.3547330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter is concerned with Fourier transform pair (FTP) codes over finite fields. Given any element of order n in a finite field, we can construct an FTP code with length <inline-formula> <tex-math>$2n$ </tex-math></inline-formula>, dimension n, and minimum distance at least <inline-formula> <tex-math>$2\\\\sqrt {n}$ </tex-math></inline-formula>. Distinguishingly, an FTP code defined with any element (if it exists) of order 2, 3 or 5 in a finite field is a maximum distance separable code. In this letter, we extend the FTP codes to generalized FTP (GFTP) codes. To show the superiority of the GFTP codes over the FTP codes, we compute the binary weight spectra of the GFTP codes, approaching more close than the FTP codes to that of the random codes. We also apply the ordered statistic decoding with local constraints (LC-OSD) algorithm to the binary image of GFTP codes. Numerical results show that the GFTP codes perform better than the FTP codes as the code length increases. Numerical results also show that GFTP codes are comparable with existing codes of the same code rate and similar code length.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 5\",\"pages\":\"933-937\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909205/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909205/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

这封信是关于有限域上的傅里叶变换对(FTP)码。给定有限域中的任意n阶元素,我们可以构造一个长度为$2n$,维数为n,最小距离为$2\sqrt {n}$的FTP代码。值得注意的是,在有限域中使用任意2、3或5阶元素(如果存在)定义的FTP码是最大距离可分离码。在这封信中,我们将FTP代码扩展为广义FTP (GFTP)代码。为了证明GFTP码相对于FTP码的优越性,我们计算了GFTP码的二值权谱,使其比FTP码更接近随机码的权谱。我们还将带有局部约束的有序统计解码(LC-OSD)算法应用于GFTP码的二值图像。数值结果表明,随着码长的增加,GFTP码的性能优于FTP码。数值结果还表明,GFTP码与相同码率和相似码长的现有码具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Fourier Transform Pair Codes
This letter is concerned with Fourier transform pair (FTP) codes over finite fields. Given any element of order n in a finite field, we can construct an FTP code with length $2n$ , dimension n, and minimum distance at least $2\sqrt {n}$ . Distinguishingly, an FTP code defined with any element (if it exists) of order 2, 3 or 5 in a finite field is a maximum distance separable code. In this letter, we extend the FTP codes to generalized FTP (GFTP) codes. To show the superiority of the GFTP codes over the FTP codes, we compute the binary weight spectra of the GFTP codes, approaching more close than the FTP codes to that of the random codes. We also apply the ordered statistic decoding with local constraints (LC-OSD) algorithm to the binary image of GFTP codes. Numerical results show that the GFTP codes perform better than the FTP codes as the code length increases. Numerical results also show that GFTP codes are comparable with existing codes of the same code rate and similar code length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信