利用ResNet自编码器设计MIMO雷达系统中相位量化序列

Ryota Sekiya;Hiroki Mori;Hiromi Hashimoto;Junichiro Suzuki
{"title":"利用ResNet自编码器设计MIMO雷达系统中相位量化序列","authors":"Ryota Sekiya;Hiroki Mori;Hiromi Hashimoto;Junichiro Suzuki","doi":"10.1109/TRS.2025.3562698","DOIUrl":null,"url":null,"abstract":"Multiple-input multiple-output (MIMO) radar technologies can improve radar detection capabilities and share frequencies with adjacent radar sites by transmitting nearly uncorrelated waveforms. Under certain system constraints, a set of finite-resolution digital-to-analog converters (DACs) can reduce hardware cost and power consumption. However, the waveform quantization process through DACs forces a continuous phase to lie within a discrete phase, which degrades auto- and cross-correlations. Therefore, it is usually desirable that the sequence has a finite alphabet achieving good correlation properties. Recently, uncorrelated waveform design by applying neural networks (NNs) in place of coding theory has received much attention. However, the design of phase-quantized sequences using NNs has been delicate because of differentiability with sequences modulated by discrete phase. This article proposes a framework for designing phase-quantized sequences using an NN. Numerical results show that sequences designed using the proposed framework have better correlation properties compared with those designed using existing algorithms.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"681-694"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of ResNet Autoencoders for Designing Phase-Quantized Sequences With Good Correlation for MIMO Radar Systems\",\"authors\":\"Ryota Sekiya;Hiroki Mori;Hiromi Hashimoto;Junichiro Suzuki\",\"doi\":\"10.1109/TRS.2025.3562698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple-input multiple-output (MIMO) radar technologies can improve radar detection capabilities and share frequencies with adjacent radar sites by transmitting nearly uncorrelated waveforms. Under certain system constraints, a set of finite-resolution digital-to-analog converters (DACs) can reduce hardware cost and power consumption. However, the waveform quantization process through DACs forces a continuous phase to lie within a discrete phase, which degrades auto- and cross-correlations. Therefore, it is usually desirable that the sequence has a finite alphabet achieving good correlation properties. Recently, uncorrelated waveform design by applying neural networks (NNs) in place of coding theory has received much attention. However, the design of phase-quantized sequences using NNs has been delicate because of differentiability with sequences modulated by discrete phase. This article proposes a framework for designing phase-quantized sequences using an NN. Numerical results show that sequences designed using the proposed framework have better correlation properties compared with those designed using existing algorithms.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"3 \",\"pages\":\"681-694\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10971412/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10971412/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多输入多输出(MIMO)雷达技术可以提高雷达探测能力,并通过传输几乎不相关的波形与相邻雷达站点共享频率。在一定的系统约束下,一组有限分辨率数模转换器(dac)可以降低硬件成本和功耗。然而,通过dac的波形量化过程迫使连续相位位于离散相位内,从而降低了自相关性和相互相关性。因此,通常希望序列具有有限的字母表,以实现良好的相关特性。近年来,利用神经网络代替编码理论进行非相关波形设计受到了广泛关注。然而,由于离散相位调制序列的可微性,使用神经网络设计相位量化序列一直很微妙。本文提出了一种利用神经网络设计相位量化序列的框架。数值结果表明,与使用现有算法设计的序列相比,使用该框架设计的序列具有更好的相关特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of ResNet Autoencoders for Designing Phase-Quantized Sequences With Good Correlation for MIMO Radar Systems
Multiple-input multiple-output (MIMO) radar technologies can improve radar detection capabilities and share frequencies with adjacent radar sites by transmitting nearly uncorrelated waveforms. Under certain system constraints, a set of finite-resolution digital-to-analog converters (DACs) can reduce hardware cost and power consumption. However, the waveform quantization process through DACs forces a continuous phase to lie within a discrete phase, which degrades auto- and cross-correlations. Therefore, it is usually desirable that the sequence has a finite alphabet achieving good correlation properties. Recently, uncorrelated waveform design by applying neural networks (NNs) in place of coding theory has received much attention. However, the design of phase-quantized sequences using NNs has been delicate because of differentiability with sequences modulated by discrete phase. This article proposes a framework for designing phase-quantized sequences using an NN. Numerical results show that sequences designed using the proposed framework have better correlation properties compared with those designed using existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信