{"title":"基于内外表面波双工的双圆极化超表面天线","authors":"Ravikanth Thanikonda;Marco Faenzi;Alberto Toccafondi;Enrica Martini;Stefano Maci","doi":"10.1109/TAP.2025.3529257","DOIUrl":null,"url":null,"abstract":"This article proposes the design and numerical validation of a dual-polarized metasurface (MTS)-based antenna, in which the two polarizations share the same circular aperture. The design exploits the interaction of duplexed inward- and outward-traveling surface waves (SWs) with an unwinding spiral MTS impedance pattern. The two inward/outward illuminations share a common radiating aperture and are originated by an integrated triaxial-cable feeding. The inward cylindrical wave is launched in a parallel plate waveguide (PPWG) by the external part of the triaxial cable (TC) and then redirected inward by a corner reflector at the aperture rim. Interacting with the anisotropic-modulated impedance boundary condition (IBC), it provides a broadside left-handed circularly polarized (LHCP) beam. On the other hand, the outward SW originates from the center as excited by a monopole connected to the inner conductor of the TC and provides a right-handed circularly polarized (RHCP) broadside radiation. New design formulas are derived for the total efficiency of the two modes. A practical feeding structure is designed and validated, featuring a coplanar-to-triaxial waveguide transition for broadband performance, ensuring a low-profile and simple configuration.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"73 5","pages":"2700-2712"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10847702","citationCount":"0","resultStr":"{\"title\":\"Dual Circularly Polarized Metasurface Antenna Based on Inward and Outward Surface Wave Duplexing\",\"authors\":\"Ravikanth Thanikonda;Marco Faenzi;Alberto Toccafondi;Enrica Martini;Stefano Maci\",\"doi\":\"10.1109/TAP.2025.3529257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes the design and numerical validation of a dual-polarized metasurface (MTS)-based antenna, in which the two polarizations share the same circular aperture. The design exploits the interaction of duplexed inward- and outward-traveling surface waves (SWs) with an unwinding spiral MTS impedance pattern. The two inward/outward illuminations share a common radiating aperture and are originated by an integrated triaxial-cable feeding. The inward cylindrical wave is launched in a parallel plate waveguide (PPWG) by the external part of the triaxial cable (TC) and then redirected inward by a corner reflector at the aperture rim. Interacting with the anisotropic-modulated impedance boundary condition (IBC), it provides a broadside left-handed circularly polarized (LHCP) beam. On the other hand, the outward SW originates from the center as excited by a monopole connected to the inner conductor of the TC and provides a right-handed circularly polarized (RHCP) broadside radiation. New design formulas are derived for the total efficiency of the two modes. A practical feeding structure is designed and validated, featuring a coplanar-to-triaxial waveguide transition for broadband performance, ensuring a low-profile and simple configuration.\",\"PeriodicalId\":13102,\"journal\":{\"name\":\"IEEE Transactions on Antennas and Propagation\",\"volume\":\"73 5\",\"pages\":\"2700-2712\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10847702\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10847702/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10847702/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dual Circularly Polarized Metasurface Antenna Based on Inward and Outward Surface Wave Duplexing
This article proposes the design and numerical validation of a dual-polarized metasurface (MTS)-based antenna, in which the two polarizations share the same circular aperture. The design exploits the interaction of duplexed inward- and outward-traveling surface waves (SWs) with an unwinding spiral MTS impedance pattern. The two inward/outward illuminations share a common radiating aperture and are originated by an integrated triaxial-cable feeding. The inward cylindrical wave is launched in a parallel plate waveguide (PPWG) by the external part of the triaxial cable (TC) and then redirected inward by a corner reflector at the aperture rim. Interacting with the anisotropic-modulated impedance boundary condition (IBC), it provides a broadside left-handed circularly polarized (LHCP) beam. On the other hand, the outward SW originates from the center as excited by a monopole connected to the inner conductor of the TC and provides a right-handed circularly polarized (RHCP) broadside radiation. New design formulas are derived for the total efficiency of the two modes. A practical feeding structure is designed and validated, featuring a coplanar-to-triaxial waveguide transition for broadband performance, ensuring a low-profile and simple configuration.
期刊介绍:
IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques