逼近图形最小最大值和最小周期/路径/树木覆盖问题

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Wei Yu, Zhaohui Liu
{"title":"逼近图形最小最大值和最小周期/路径/树木覆盖问题","authors":"Wei Yu,&nbsp;Zhaohui Liu","doi":"10.1016/j.dam.2025.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we consider the Graphic Min-Max Cycle/Path/Tree Cover Problem and the Graphic Minimum Cycle/Path/Tree Cover Problem, some of which generalize the famous Graphic TSP. For all six problems, we obtain approximation algorithms with better ratios than the corresponding problems defined on general metrics. For the Graphic Minimum Path Cover Problem, we even show a best possible approximation ratio of 2, assuming <span><math><mrow><mi>P</mi><mo>≠</mo><mi>N</mi><mi>P</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 314-323"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating Graphic Min-Max and Minimum Cycle/Path/Tree Cover Problems\",\"authors\":\"Wei Yu,&nbsp;Zhaohui Liu\",\"doi\":\"10.1016/j.dam.2025.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work we consider the Graphic Min-Max Cycle/Path/Tree Cover Problem and the Graphic Minimum Cycle/Path/Tree Cover Problem, some of which generalize the famous Graphic TSP. For all six problems, we obtain approximation algorithms with better ratios than the corresponding problems defined on general metrics. For the Graphic Minimum Path Cover Problem, we even show a best possible approximation ratio of 2, assuming <span><math><mrow><mi>P</mi><mo>≠</mo><mi>N</mi><mi>P</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"372 \",\"pages\":\"Pages 314-323\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25002471\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25002471","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了图形最小-最大周期/路径/树覆盖问题和图形最小周期/路径/树覆盖问题,其中一些问题推广了著名的图形TSP。对于这六个问题,我们得到了比在一般度量上定义的相应问题具有更好比率的近似算法。对于图形最小路径覆盖问题,我们甚至给出了假设P≠NP的最佳可能近似比为2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating Graphic Min-Max and Minimum Cycle/Path/Tree Cover Problems
In this work we consider the Graphic Min-Max Cycle/Path/Tree Cover Problem and the Graphic Minimum Cycle/Path/Tree Cover Problem, some of which generalize the famous Graphic TSP. For all six problems, we obtain approximation algorithms with better ratios than the corresponding problems defined on general metrics. For the Graphic Minimum Path Cover Problem, we even show a best possible approximation ratio of 2, assuming PNP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信