官能团表面修饰氧化石墨烯增强天然酯类绝缘油介电性能和导热性能的分子动力学研究

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Danquan Lan , Yiyi Zhang , Pengfei Jia , Xianfu Lin , Chuanhui Xu , Heqi Song , Wenchang Wei , Zhicheng Su , Xingtuo Zhang
{"title":"官能团表面修饰氧化石墨烯增强天然酯类绝缘油介电性能和导热性能的分子动力学研究","authors":"Danquan Lan ,&nbsp;Yiyi Zhang ,&nbsp;Pengfei Jia ,&nbsp;Xianfu Lin ,&nbsp;Chuanhui Xu ,&nbsp;Heqi Song ,&nbsp;Wenchang Wei ,&nbsp;Zhicheng Su ,&nbsp;Xingtuo Zhang","doi":"10.1016/j.renene.2025.123413","DOIUrl":null,"url":null,"abstract":"<div><div>As a sustainable dielectric fluid critical for next-generation green power grids, natural ester insulating oil requires rational design strategies to overcome performance limitations. This study provided a simulation-guided experimental strategy to enhance the performance of nano-natural ester insulating oil. Through multi-scale molecular dynamics (MD) simulations, we established an atomistic model of 3-aminopropyltriethoxysilane (APTES)-functionalized graphene/natural ester systems, systematically evaluating dielectric response, thermal transport, and interfacial interactions characteristics. Based on the simulation results, nano-modified graphene/natural ester insulating oils with optimized concentration (0.05 g/L) were then prepared, ensuring a more targeted and effective experimental process. The experimental results indicated that the modified natural ester insulating oil exhibited a 30.5 % reduction in dielectric loss degradation factor, a 23.8 % increase in breakdown voltage, and a 10.9 % enhancement in thermal conductivity compared to the pure natural ester insulating oil. Density functional theory (DFT) simulations revealed the microscopic mechanisms of property enhancement in natural ester oils via silanol groups (-<em>Si</em>-<em>OH</em>) and amino groups (-<em>NH</em><sub>2</sub>) functionalization. This work demonstrates the feasibility of using MD simulation to guide the modification of new insulating oil. Compared with traditional preparation methods, this method is expected to be applied to the research on new insulating oil materials in the future.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"250 ","pages":"Article 123413"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics study on functional group surface modified graphene oxide towards enhanced dielectric properties and thermal conductivity of natural ester insulating oil\",\"authors\":\"Danquan Lan ,&nbsp;Yiyi Zhang ,&nbsp;Pengfei Jia ,&nbsp;Xianfu Lin ,&nbsp;Chuanhui Xu ,&nbsp;Heqi Song ,&nbsp;Wenchang Wei ,&nbsp;Zhicheng Su ,&nbsp;Xingtuo Zhang\",\"doi\":\"10.1016/j.renene.2025.123413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a sustainable dielectric fluid critical for next-generation green power grids, natural ester insulating oil requires rational design strategies to overcome performance limitations. This study provided a simulation-guided experimental strategy to enhance the performance of nano-natural ester insulating oil. Through multi-scale molecular dynamics (MD) simulations, we established an atomistic model of 3-aminopropyltriethoxysilane (APTES)-functionalized graphene/natural ester systems, systematically evaluating dielectric response, thermal transport, and interfacial interactions characteristics. Based on the simulation results, nano-modified graphene/natural ester insulating oils with optimized concentration (0.05 g/L) were then prepared, ensuring a more targeted and effective experimental process. The experimental results indicated that the modified natural ester insulating oil exhibited a 30.5 % reduction in dielectric loss degradation factor, a 23.8 % increase in breakdown voltage, and a 10.9 % enhancement in thermal conductivity compared to the pure natural ester insulating oil. Density functional theory (DFT) simulations revealed the microscopic mechanisms of property enhancement in natural ester oils via silanol groups (-<em>Si</em>-<em>OH</em>) and amino groups (-<em>NH</em><sub>2</sub>) functionalization. This work demonstrates the feasibility of using MD simulation to guide the modification of new insulating oil. Compared with traditional preparation methods, this method is expected to be applied to the research on new insulating oil materials in the future.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"250 \",\"pages\":\"Article 123413\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148125010754\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125010754","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

天然酯绝缘油作为下一代绿色电网的可持续介质,需要合理的设计策略来克服性能限制。本研究为提高纳米天然酯绝缘油的性能提供了一种模拟导向的实验策略。通过多尺度分子动力学(MD)模拟,我们建立了3-氨基丙基三乙氧基硅烷(APTES)功能化石墨烯/天然酯体系的原子模型,系统地评估了介电响应、热输运和界面相互作用特性。在模拟结果的基础上,制备了优化浓度(0.05 g/L)的纳米改性石墨烯/天然酯绝缘油,确保了实验过程更具针对性和有效性。实验结果表明,与纯天然酯绝缘油相比,改性后的天然酯绝缘油的介电损耗降低因子降低30.5%,击穿电压提高23.8%,导热系数提高10.9%。密度泛函理论(DFT)模拟揭示了硅醇基(-Si-OH)和氨基(-NH2)功能化对天然酯油性能增强的微观机制。本文论证了用MD模拟指导新型绝缘油改性的可行性。与传统的制备方法相比,该方法有望应用于未来新型绝缘油材料的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular dynamics study on functional group surface modified graphene oxide towards enhanced dielectric properties and thermal conductivity of natural ester insulating oil

Molecular dynamics study on functional group surface modified graphene oxide towards enhanced dielectric properties and thermal conductivity of natural ester insulating oil
As a sustainable dielectric fluid critical for next-generation green power grids, natural ester insulating oil requires rational design strategies to overcome performance limitations. This study provided a simulation-guided experimental strategy to enhance the performance of nano-natural ester insulating oil. Through multi-scale molecular dynamics (MD) simulations, we established an atomistic model of 3-aminopropyltriethoxysilane (APTES)-functionalized graphene/natural ester systems, systematically evaluating dielectric response, thermal transport, and interfacial interactions characteristics. Based on the simulation results, nano-modified graphene/natural ester insulating oils with optimized concentration (0.05 g/L) were then prepared, ensuring a more targeted and effective experimental process. The experimental results indicated that the modified natural ester insulating oil exhibited a 30.5 % reduction in dielectric loss degradation factor, a 23.8 % increase in breakdown voltage, and a 10.9 % enhancement in thermal conductivity compared to the pure natural ester insulating oil. Density functional theory (DFT) simulations revealed the microscopic mechanisms of property enhancement in natural ester oils via silanol groups (-Si-OH) and amino groups (-NH2) functionalization. This work demonstrates the feasibility of using MD simulation to guide the modification of new insulating oil. Compared with traditional preparation methods, this method is expected to be applied to the research on new insulating oil materials in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信