Gaddam Kalpana , Chappidi Hanumantha Rao , Musa Adamu , Ashwin Raut , Yasser E. Ibrahim
{"title":"电石渣和高效减水剂用量对粉煤灰基地聚合物复合材料力学和微观结构性能的影响","authors":"Gaddam Kalpana , Chappidi Hanumantha Rao , Musa Adamu , Ashwin Raut , Yasser E. Ibrahim","doi":"10.1016/j.oceram.2025.100794","DOIUrl":null,"url":null,"abstract":"<div><div>The role of calcium-rich waste like Calcium carbide residue (CCR) in enhancing the performance of geopolymer remains inadequately explored. This study investigates the structural, mechanical, and microstructural behaviour of low-calcium fly ash (FA)-based geopolymer composites modified with varying CCR contents (0 %, 10 %, 20 %), sodium hydroxide molarities (8 M, 10 M, 12 M), and superplasticizer dosages (0 %, 1 %, 2 %). Results revealed that 10 % CCR combined with 2 % superplasticizer and 12 M NaOH offered optimal performance, achieving a 16.8 % increase in compressive strength, a 144.8 % rise in tensile strength (3.06 MPa), and a 145.5 % improvement in flexural strength (3.83 MPa). Flowability improved by 15 % with higher superplasticizer dosage, whereas excessive CCR (20 %) adversely affected strength and porosity. Microstructural observations confirmed the synergistic formation of N-A-S-H and C-S-H gels in optimized mixes. These findings highlight CCR’s viability as a sustainable calcium source in geopolymer technology, promoting enhanced mechanical performance and environmental sustainability through industrial waste valorisation.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":"22 ","pages":"Article 100794"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of calcium carbide residue and superplasticizer dosages on the mechanical and microstructural properties of fly ash based geopolymer composites\",\"authors\":\"Gaddam Kalpana , Chappidi Hanumantha Rao , Musa Adamu , Ashwin Raut , Yasser E. Ibrahim\",\"doi\":\"10.1016/j.oceram.2025.100794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The role of calcium-rich waste like Calcium carbide residue (CCR) in enhancing the performance of geopolymer remains inadequately explored. This study investigates the structural, mechanical, and microstructural behaviour of low-calcium fly ash (FA)-based geopolymer composites modified with varying CCR contents (0 %, 10 %, 20 %), sodium hydroxide molarities (8 M, 10 M, 12 M), and superplasticizer dosages (0 %, 1 %, 2 %). Results revealed that 10 % CCR combined with 2 % superplasticizer and 12 M NaOH offered optimal performance, achieving a 16.8 % increase in compressive strength, a 144.8 % rise in tensile strength (3.06 MPa), and a 145.5 % improvement in flexural strength (3.83 MPa). Flowability improved by 15 % with higher superplasticizer dosage, whereas excessive CCR (20 %) adversely affected strength and porosity. Microstructural observations confirmed the synergistic formation of N-A-S-H and C-S-H gels in optimized mixes. These findings highlight CCR’s viability as a sustainable calcium source in geopolymer technology, promoting enhanced mechanical performance and environmental sustainability through industrial waste valorisation.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":\"22 \",\"pages\":\"Article 100794\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666539525000616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666539525000616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
电石渣等富钙废弃物在提高地聚合物性能方面的作用尚未得到充分的研究。本研究考察了不同CCR含量(0%、10%、20%)、氢氧化钠摩尔浓度(8 M、10 M、12 M)和高效减水剂用量(0%、1%、2%)改性的低钙粉煤灰(FA)基地聚合物复合材料的结构、力学和微观结构行为。结果表明,10%的CCR与2%的高效减水剂和12 M NaOH的组合性能最佳,抗压强度提高16.8%,抗拉强度提高144.8% (3.06 MPa),弯曲强度提高145.5% (3.83 MPa)。较高的高效减水剂用量可使流动性提高15%,而过量的CCR(20%)会对强度和孔隙度产生不利影响。微观结构观察证实了优化后的混合物中N-A-S-H和C-S-H凝胶的协同形成。这些发现强调了CCR作为地聚合物技术中可持续钙源的可行性,通过工业废物增值促进增强的机械性能和环境可持续性。
Effect of calcium carbide residue and superplasticizer dosages on the mechanical and microstructural properties of fly ash based geopolymer composites
The role of calcium-rich waste like Calcium carbide residue (CCR) in enhancing the performance of geopolymer remains inadequately explored. This study investigates the structural, mechanical, and microstructural behaviour of low-calcium fly ash (FA)-based geopolymer composites modified with varying CCR contents (0 %, 10 %, 20 %), sodium hydroxide molarities (8 M, 10 M, 12 M), and superplasticizer dosages (0 %, 1 %, 2 %). Results revealed that 10 % CCR combined with 2 % superplasticizer and 12 M NaOH offered optimal performance, achieving a 16.8 % increase in compressive strength, a 144.8 % rise in tensile strength (3.06 MPa), and a 145.5 % improvement in flexural strength (3.83 MPa). Flowability improved by 15 % with higher superplasticizer dosage, whereas excessive CCR (20 %) adversely affected strength and porosity. Microstructural observations confirmed the synergistic formation of N-A-S-H and C-S-H gels in optimized mixes. These findings highlight CCR’s viability as a sustainable calcium source in geopolymer technology, promoting enhanced mechanical performance and environmental sustainability through industrial waste valorisation.