Mingguang Yang , Zhenhua Quan , Lincheng Wang , Zichu Liu , Zejian Chang , Yaohua Zhao
{"title":"微热管阵列与多目标优化相结合的新型PEMFC堆模型研究","authors":"Mingguang Yang , Zhenhua Quan , Lincheng Wang , Zichu Liu , Zejian Chang , Yaohua Zhao","doi":"10.1016/j.apenergy.2025.126033","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the novel proton exchange membrane fuel cells (PEMFC) stack integrated with highly thermal conductive micro heat pipe arrays (MHPA), a method that combines mathematical modeling, experiment, and multi-objective optimization is designed in this paper. The mathematical model adopts lumped parameter coupled with water, thermal, electricity, and other sub-models, which is used to investigate the performance of the MHPA-PEMFC stack, and is further combined with the response surface method to develop a multi-objective joint optimization strategy and predictive models for the structure of the stack. Results show that the performance of the stack at low ambient temperature is better when the stack is under high currents. The maximum loading currents and maximum power density improvement effects of increasing the number of MHPA are much less than the disadvantages brought by increasing the weight. The optimization results suggest that for each 1 kW of the stack, the optimum configuration is as follows: The numbers of MHPAs and fin groups are 30 and 10, respectively, and the length of MHPA condensation is 75.7 mm. The maximum net power under typical load (30 A) can be increased by 17.7 %, and the stack weight can be reduced by 1083.5 g after optimization.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"393 ","pages":"Article 126033"},"PeriodicalIF":10.1000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on a novel model of PEMFC stack integrated with micro heat pipe arrays and multi-objective optimization\",\"authors\":\"Mingguang Yang , Zhenhua Quan , Lincheng Wang , Zichu Liu , Zejian Chang , Yaohua Zhao\",\"doi\":\"10.1016/j.apenergy.2025.126033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the novel proton exchange membrane fuel cells (PEMFC) stack integrated with highly thermal conductive micro heat pipe arrays (MHPA), a method that combines mathematical modeling, experiment, and multi-objective optimization is designed in this paper. The mathematical model adopts lumped parameter coupled with water, thermal, electricity, and other sub-models, which is used to investigate the performance of the MHPA-PEMFC stack, and is further combined with the response surface method to develop a multi-objective joint optimization strategy and predictive models for the structure of the stack. Results show that the performance of the stack at low ambient temperature is better when the stack is under high currents. The maximum loading currents and maximum power density improvement effects of increasing the number of MHPA are much less than the disadvantages brought by increasing the weight. The optimization results suggest that for each 1 kW of the stack, the optimum configuration is as follows: The numbers of MHPAs and fin groups are 30 and 10, respectively, and the length of MHPA condensation is 75.7 mm. The maximum net power under typical load (30 A) can be increased by 17.7 %, and the stack weight can be reduced by 1083.5 g after optimization.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"393 \",\"pages\":\"Article 126033\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925007639\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925007639","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Investigation on a novel model of PEMFC stack integrated with micro heat pipe arrays and multi-objective optimization
Based on the novel proton exchange membrane fuel cells (PEMFC) stack integrated with highly thermal conductive micro heat pipe arrays (MHPA), a method that combines mathematical modeling, experiment, and multi-objective optimization is designed in this paper. The mathematical model adopts lumped parameter coupled with water, thermal, electricity, and other sub-models, which is used to investigate the performance of the MHPA-PEMFC stack, and is further combined with the response surface method to develop a multi-objective joint optimization strategy and predictive models for the structure of the stack. Results show that the performance of the stack at low ambient temperature is better when the stack is under high currents. The maximum loading currents and maximum power density improvement effects of increasing the number of MHPA are much less than the disadvantages brought by increasing the weight. The optimization results suggest that for each 1 kW of the stack, the optimum configuration is as follows: The numbers of MHPAs and fin groups are 30 and 10, respectively, and the length of MHPA condensation is 75.7 mm. The maximum net power under typical load (30 A) can be increased by 17.7 %, and the stack weight can be reduced by 1083.5 g after optimization.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.