电力电子用Cu@Ag预制体电磁压实烧结参数及键合机理研究

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Li Liu , Qian Wang , Stuart Robertson , Chuantong Chen , Changqing Liu , Zhaoxia Zhou , Chengjiong Tuo , Haojie Ma , Liting Nong , Xueqiang Cao , Zhiwen Chen
{"title":"电力电子用Cu@Ag预制体电磁压实烧结参数及键合机理研究","authors":"Li Liu ,&nbsp;Qian Wang ,&nbsp;Stuart Robertson ,&nbsp;Chuantong Chen ,&nbsp;Changqing Liu ,&nbsp;Zhaoxia Zhou ,&nbsp;Chengjiong Tuo ,&nbsp;Haojie Ma ,&nbsp;Liting Nong ,&nbsp;Xueqiang Cao ,&nbsp;Zhiwen Chen","doi":"10.1016/j.jallcom.2025.180842","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the low-temperature sintering and stress-assisted bonding mechanisms of Cu@Ag composite preforms fabricated via electromagnetic compaction (EMC) technology. Experimental results show that the sintering temperature, pressure, time, and internal stress significantly enhance their bonding quality, achieving a high shear strength of up to 52.01 MPa. Molecular dynamics (MD) simulations reveal that internal stress promotes plastic deformation of Cu@Ag core-shell particles, accelerates atomic diffusion, and facilitates recrystallization, reducing the required bonding energy during sintering. Consequently, this combined effect enables directly effective bonding at low temperatures without the need for intermetallic compound formation or organic solvents. These findings highlight the potential of Cu@Ag preforms as reliable die-attach materials for next-generation power electronics.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1030 ","pages":"Article 180842"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on sintering parameters and bonding mechanism of Cu@Ag preform via electromagnetic compaction for power electronics\",\"authors\":\"Li Liu ,&nbsp;Qian Wang ,&nbsp;Stuart Robertson ,&nbsp;Chuantong Chen ,&nbsp;Changqing Liu ,&nbsp;Zhaoxia Zhou ,&nbsp;Chengjiong Tuo ,&nbsp;Haojie Ma ,&nbsp;Liting Nong ,&nbsp;Xueqiang Cao ,&nbsp;Zhiwen Chen\",\"doi\":\"10.1016/j.jallcom.2025.180842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the low-temperature sintering and stress-assisted bonding mechanisms of Cu@Ag composite preforms fabricated via electromagnetic compaction (EMC) technology. Experimental results show that the sintering temperature, pressure, time, and internal stress significantly enhance their bonding quality, achieving a high shear strength of up to 52.01 MPa. Molecular dynamics (MD) simulations reveal that internal stress promotes plastic deformation of Cu@Ag core-shell particles, accelerates atomic diffusion, and facilitates recrystallization, reducing the required bonding energy during sintering. Consequently, this combined effect enables directly effective bonding at low temperatures without the need for intermetallic compound formation or organic solvents. These findings highlight the potential of Cu@Ag preforms as reliable die-attach materials for next-generation power electronics.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1030 \",\"pages\":\"Article 180842\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092583882502403X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092583882502403X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了通过电磁压实(EMC)技术制备Cu@Ag复合预制体的低温烧结和应力辅助键合机制。实验结果表明,烧结温度、压力、时间和内应力均显著提高了其粘结质量,抗剪强度高达52.01 MPa。分子动力学(MD)模拟表明,内应力促进了Cu@Ag核壳粒子的塑性变形,加速了原子扩散,促进了再结晶,降低了烧结过程中所需的键能。因此,这种组合效应可以在低温下直接有效地成键,而不需要金属间化合物的形成或有机溶剂。这些发现突出了Cu@Ag预成型作为下一代电力电子产品可靠的模贴材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on sintering parameters and bonding mechanism of Cu@Ag preform via electromagnetic compaction for power electronics

Study on sintering parameters and bonding mechanism of Cu@Ag preform via electromagnetic compaction for power electronics
This study investigates the low-temperature sintering and stress-assisted bonding mechanisms of Cu@Ag composite preforms fabricated via electromagnetic compaction (EMC) technology. Experimental results show that the sintering temperature, pressure, time, and internal stress significantly enhance their bonding quality, achieving a high shear strength of up to 52.01 MPa. Molecular dynamics (MD) simulations reveal that internal stress promotes plastic deformation of Cu@Ag core-shell particles, accelerates atomic diffusion, and facilitates recrystallization, reducing the required bonding energy during sintering. Consequently, this combined effect enables directly effective bonding at low temperatures without the need for intermetallic compound formation or organic solvents. These findings highlight the potential of Cu@Ag preforms as reliable die-attach materials for next-generation power electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信