Sudip Bera , Hiranya Kishore Dey , Kamal Lochan Patra , Binod Kumar Sahoo
{"title":"有限群的真幂图的支配数","authors":"Sudip Bera , Hiranya Kishore Dey , Kamal Lochan Patra , Binod Kumar Sahoo","doi":"10.1016/j.disc.2025.114557","DOIUrl":null,"url":null,"abstract":"<div><div>The proper power graph <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a finite group <em>G</em> is the simple graph whose vertices are the <em>nonindentity</em> elements of <em>G</em> and two distinct vertices are adjacent if one of them is a power of the other. In this paper, we study the domination number <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> by relating it with the number of distinct prime order subgroups of <em>G</em>. For a nilpotent group <em>G</em>, we give a sharp upper bound for <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>. When <em>G</em> is a direct product of two nontrivial groups <em>H</em> and <em>K</em>, we give a sharp lower bound for <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> in terms of the number of components of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>. As an application, we determine <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> when <em>G</em> is a nilpotent group whose order is divisible by at most two distinct primes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114557"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the domination number of proper power graphs of finite groups\",\"authors\":\"Sudip Bera , Hiranya Kishore Dey , Kamal Lochan Patra , Binod Kumar Sahoo\",\"doi\":\"10.1016/j.disc.2025.114557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The proper power graph <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a finite group <em>G</em> is the simple graph whose vertices are the <em>nonindentity</em> elements of <em>G</em> and two distinct vertices are adjacent if one of them is a power of the other. In this paper, we study the domination number <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> by relating it with the number of distinct prime order subgroups of <em>G</em>. For a nilpotent group <em>G</em>, we give a sharp upper bound for <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>. When <em>G</em> is a direct product of two nontrivial groups <em>H</em> and <em>K</em>, we give a sharp lower bound for <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> in terms of the number of components of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>. As an application, we determine <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> when <em>G</em> is a nilpotent group whose order is divisible by at most two distinct primes.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 10\",\"pages\":\"Article 114557\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001657\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001657","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the domination number of proper power graphs of finite groups
The proper power graph of a finite group G is the simple graph whose vertices are the nonindentity elements of G and two distinct vertices are adjacent if one of them is a power of the other. In this paper, we study the domination number of by relating it with the number of distinct prime order subgroups of G. For a nilpotent group G, we give a sharp upper bound for . When G is a direct product of two nontrivial groups H and K, we give a sharp lower bound for in terms of the number of components of and . As an application, we determine when G is a nilpotent group whose order is divisible by at most two distinct primes.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.