有限群的真幂图的支配数

IF 0.7 3区 数学 Q2 MATHEMATICS
Sudip Bera , Hiranya Kishore Dey , Kamal Lochan Patra , Binod Kumar Sahoo
{"title":"有限群的真幂图的支配数","authors":"Sudip Bera ,&nbsp;Hiranya Kishore Dey ,&nbsp;Kamal Lochan Patra ,&nbsp;Binod Kumar Sahoo","doi":"10.1016/j.disc.2025.114557","DOIUrl":null,"url":null,"abstract":"<div><div>The proper power graph <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a finite group <em>G</em> is the simple graph whose vertices are the <em>nonindentity</em> elements of <em>G</em> and two distinct vertices are adjacent if one of them is a power of the other. In this paper, we study the domination number <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> by relating it with the number of distinct prime order subgroups of <em>G</em>. For a nilpotent group <em>G</em>, we give a sharp upper bound for <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>. When <em>G</em> is a direct product of two nontrivial groups <em>H</em> and <em>K</em>, we give a sharp lower bound for <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> in terms of the number of components of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>. As an application, we determine <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> when <em>G</em> is a nilpotent group whose order is divisible by at most two distinct primes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114557"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the domination number of proper power graphs of finite groups\",\"authors\":\"Sudip Bera ,&nbsp;Hiranya Kishore Dey ,&nbsp;Kamal Lochan Patra ,&nbsp;Binod Kumar Sahoo\",\"doi\":\"10.1016/j.disc.2025.114557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The proper power graph <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a finite group <em>G</em> is the simple graph whose vertices are the <em>nonindentity</em> elements of <em>G</em> and two distinct vertices are adjacent if one of them is a power of the other. In this paper, we study the domination number <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> by relating it with the number of distinct prime order subgroups of <em>G</em>. For a nilpotent group <em>G</em>, we give a sharp upper bound for <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span>. When <em>G</em> is a direct product of two nontrivial groups <em>H</em> and <em>K</em>, we give a sharp lower bound for <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> in terms of the number of components of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>. As an application, we determine <span><math><mi>γ</mi><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> when <em>G</em> is a nilpotent group whose order is divisible by at most two distinct primes.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 10\",\"pages\":\"Article 114557\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001657\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001657","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

有限群G的适当幂图P (G)是这样的简单图,其顶点是G的非恒等元素,且两个不同的顶点相邻,如果其中一个顶点是另一个顶点的幂。本文通过将P (G)的支配数γ(P (G))与G的不同素阶子群的数目联系起来,研究了它的支配数γ(P (G))。对于幂零群G,我们给出了它的一个尖锐上界。当G是两个非平凡群H和K的直积时,我们给出了关于P (H)和P (K)的分量数目的γ(P (G))的下界。作为一个应用,我们确定了当G是幂零群且序最多可被两个不同素数整除时γ(P (G))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the domination number of proper power graphs of finite groups
The proper power graph P(G) of a finite group G is the simple graph whose vertices are the nonindentity elements of G and two distinct vertices are adjacent if one of them is a power of the other. In this paper, we study the domination number γ(P(G)) of P(G) by relating it with the number of distinct prime order subgroups of G. For a nilpotent group G, we give a sharp upper bound for γ(P(G)). When G is a direct product of two nontrivial groups H and K, we give a sharp lower bound for γ(P(G)) in terms of the number of components of P(H) and P(K). As an application, we determine γ(P(G)) when G is a nilpotent group whose order is divisible by at most two distinct primes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信