{"title":"纳米晶体电化学发光生物传感器:从实验室发现到市场创新的道路","authors":"Abhishek Kumar , Sanket Goel","doi":"10.1016/j.biosx.2025.100633","DOIUrl":null,"url":null,"abstract":"<div><div>The commercial viability of a biosensor depends on its capability to accurately and precisely perform detection of target molecules in real physiological body fluids such as whole blood, serum, plasma, urine, saliva, tears, or sweat. A biosensor is considered ideal for detecting molecules if enriched with specific characteristics crucial for accurate outputs, namely low detection limit, high sensitivity, selectivity to target analyte, reproducibility and repeatability, and performance in real samples. Electrochemiluminescence (ECL) is a strong analytical technique with major applications in biosensing due to its inherent features from electrochemistry and photoluminescence. While existing ECL biosensors can deliver satisfactory performance in laboratory settings, only a limited number are effective in real complex matrices. The stability of biosensors in real samples is a significant concern, which often limits their commercial applications. Incorporation of nanomaterials in ECL biosensors has transformed the biomolecule detection process by providing unparalleled selectivity and sensitivity. This article deliberates on rendering contributions of nanomaterials in advancing traditional ECL biosensors to pave the way from lab discovery to market innovation. Furthermore, the article highlights the various roles of nanomaterials in addressing the critical challenges associated with the commercialization of ECL biosensors. Moreover, various essential concepts are highlighted with relevant figures and comparative tables to provide a general overview of the nanomaterial based ECL biosensors. Lastly, the future outlook and prospects of ECL biosensors in advancing molecular and clinical diagnostics is discussed.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"25 ","pages":"Article 100633"},"PeriodicalIF":10.6100,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocrystal electrochemiluminescence Biosensor: Paving the way from lab discovery to market innovation\",\"authors\":\"Abhishek Kumar , Sanket Goel\",\"doi\":\"10.1016/j.biosx.2025.100633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The commercial viability of a biosensor depends on its capability to accurately and precisely perform detection of target molecules in real physiological body fluids such as whole blood, serum, plasma, urine, saliva, tears, or sweat. A biosensor is considered ideal for detecting molecules if enriched with specific characteristics crucial for accurate outputs, namely low detection limit, high sensitivity, selectivity to target analyte, reproducibility and repeatability, and performance in real samples. Electrochemiluminescence (ECL) is a strong analytical technique with major applications in biosensing due to its inherent features from electrochemistry and photoluminescence. While existing ECL biosensors can deliver satisfactory performance in laboratory settings, only a limited number are effective in real complex matrices. The stability of biosensors in real samples is a significant concern, which often limits their commercial applications. Incorporation of nanomaterials in ECL biosensors has transformed the biomolecule detection process by providing unparalleled selectivity and sensitivity. This article deliberates on rendering contributions of nanomaterials in advancing traditional ECL biosensors to pave the way from lab discovery to market innovation. Furthermore, the article highlights the various roles of nanomaterials in addressing the critical challenges associated with the commercialization of ECL biosensors. Moreover, various essential concepts are highlighted with relevant figures and comparative tables to provide a general overview of the nanomaterial based ECL biosensors. Lastly, the future outlook and prospects of ECL biosensors in advancing molecular and clinical diagnostics is discussed.</div></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"25 \",\"pages\":\"Article 100633\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137025000603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Nanocrystal electrochemiluminescence Biosensor: Paving the way from lab discovery to market innovation
The commercial viability of a biosensor depends on its capability to accurately and precisely perform detection of target molecules in real physiological body fluids such as whole blood, serum, plasma, urine, saliva, tears, or sweat. A biosensor is considered ideal for detecting molecules if enriched with specific characteristics crucial for accurate outputs, namely low detection limit, high sensitivity, selectivity to target analyte, reproducibility and repeatability, and performance in real samples. Electrochemiluminescence (ECL) is a strong analytical technique with major applications in biosensing due to its inherent features from electrochemistry and photoluminescence. While existing ECL biosensors can deliver satisfactory performance in laboratory settings, only a limited number are effective in real complex matrices. The stability of biosensors in real samples is a significant concern, which often limits their commercial applications. Incorporation of nanomaterials in ECL biosensors has transformed the biomolecule detection process by providing unparalleled selectivity and sensitivity. This article deliberates on rendering contributions of nanomaterials in advancing traditional ECL biosensors to pave the way from lab discovery to market innovation. Furthermore, the article highlights the various roles of nanomaterials in addressing the critical challenges associated with the commercialization of ECL biosensors. Moreover, various essential concepts are highlighted with relevant figures and comparative tables to provide a general overview of the nanomaterial based ECL biosensors. Lastly, the future outlook and prospects of ECL biosensors in advancing molecular and clinical diagnostics is discussed.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.