低秩约简双四元数张量环分解与张量补全

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Hui Luo , Xin Liu , Wei Liu , Yang Zhang
{"title":"低秩约简双四元数张量环分解与张量补全","authors":"Hui Luo ,&nbsp;Xin Liu ,&nbsp;Wei Liu ,&nbsp;Yang Zhang","doi":"10.1016/j.amc.2025.129504","DOIUrl":null,"url":null,"abstract":"<div><div>We define the reduced biquaternion tensor ring (RBTR) decomposition and provide a detailed exposition of the corresponding algorithm RBTR-SVD. Leveraging RBTR decomposition, we propose a novel low-rank tensor completion algorithm RBTR-TV integrating RBTR ranks with total variation (TV) regularization to optimize the process. Numerical experiments on color image and video completion tasks indicate the advantages of our method.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"504 ","pages":"Article 129504"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-rank reduced biquaternion tensor ring decomposition and tensor completion\",\"authors\":\"Hui Luo ,&nbsp;Xin Liu ,&nbsp;Wei Liu ,&nbsp;Yang Zhang\",\"doi\":\"10.1016/j.amc.2025.129504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We define the reduced biquaternion tensor ring (RBTR) decomposition and provide a detailed exposition of the corresponding algorithm RBTR-SVD. Leveraging RBTR decomposition, we propose a novel low-rank tensor completion algorithm RBTR-TV integrating RBTR ranks with total variation (TV) regularization to optimize the process. Numerical experiments on color image and video completion tasks indicate the advantages of our method.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"504 \",\"pages\":\"Article 129504\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325002309\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325002309","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

定义了简化双四元数张量环分解(RBTR),并详细阐述了相应的RBTR- svd算法。利用RBTR分解,提出了一种新颖的低秩张量补全算法RBTR-TV,该算法将RBTR秩与总变分(TV)正则化相结合,对过程进行优化。对彩色图像和视频补全任务的数值实验表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-rank reduced biquaternion tensor ring decomposition and tensor completion
We define the reduced biquaternion tensor ring (RBTR) decomposition and provide a detailed exposition of the corresponding algorithm RBTR-SVD. Leveraging RBTR decomposition, we propose a novel low-rank tensor completion algorithm RBTR-TV integrating RBTR ranks with total variation (TV) regularization to optimize the process. Numerical experiments on color image and video completion tasks indicate the advantages of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信