Zhenyu Mu , Dedi Liu , Zhenyu Wang , Yuling Zhang , Lihua Xiong , Jie Chen , Hua Chen , Jiabo Yin
{"title":"水库群防洪调节的一般斩峰函数","authors":"Zhenyu Mu , Dedi Liu , Zhenyu Wang , Yuling Zhang , Lihua Xiong , Jie Chen , Hua Chen , Jiabo Yin","doi":"10.1016/j.jhydrol.2025.133448","DOIUrl":null,"url":null,"abstract":"<div><div>Flood event is one of the natural hazards and has affected the most people in the world. As the peak of the flood event is the most striking feature to its hazard, chopping flood peak is often the main goal of preventing flood hazard. To integrate the regulation of the flood storages in a reservoirs group for chopping flood peak, a general relationship among the flood events, the flood storages and the chopping peak has been quantified through Chopping Peak Function (CPF). And we have derived the analytical solutions for a single, a parallel or a cascade reservoirs group while numerical solution for a mixed reservoirs group to their corresponding CPF. Based on the solutions to their CPF, the mechanism is clarified for the integrated reservoirs flood storages regulation. The derived analytical solutions have also been proven to be more efficient for integrating the reservoirs regulation than for only every single reservoir regulation. The numerical solutions for the mixed reservoirs groups are found to be better than that of optimal reservoirs regulation model through NSGA-II in terms of the number and the distribution range of the Pareto frontier. Therefore, our study will not only help understand the regulation of the flood storages in reservoirs groups for chopping flood peak, but also find an efficient way to prevent flood hazard.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"660 ","pages":"Article 133448"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general chopping peak function for a reservoirs group flood control regulating\",\"authors\":\"Zhenyu Mu , Dedi Liu , Zhenyu Wang , Yuling Zhang , Lihua Xiong , Jie Chen , Hua Chen , Jiabo Yin\",\"doi\":\"10.1016/j.jhydrol.2025.133448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flood event is one of the natural hazards and has affected the most people in the world. As the peak of the flood event is the most striking feature to its hazard, chopping flood peak is often the main goal of preventing flood hazard. To integrate the regulation of the flood storages in a reservoirs group for chopping flood peak, a general relationship among the flood events, the flood storages and the chopping peak has been quantified through Chopping Peak Function (CPF). And we have derived the analytical solutions for a single, a parallel or a cascade reservoirs group while numerical solution for a mixed reservoirs group to their corresponding CPF. Based on the solutions to their CPF, the mechanism is clarified for the integrated reservoirs flood storages regulation. The derived analytical solutions have also been proven to be more efficient for integrating the reservoirs regulation than for only every single reservoir regulation. The numerical solutions for the mixed reservoirs groups are found to be better than that of optimal reservoirs regulation model through NSGA-II in terms of the number and the distribution range of the Pareto frontier. Therefore, our study will not only help understand the regulation of the flood storages in reservoirs groups for chopping flood peak, but also find an efficient way to prevent flood hazard.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"660 \",\"pages\":\"Article 133448\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169425007863\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425007863","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A general chopping peak function for a reservoirs group flood control regulating
Flood event is one of the natural hazards and has affected the most people in the world. As the peak of the flood event is the most striking feature to its hazard, chopping flood peak is often the main goal of preventing flood hazard. To integrate the regulation of the flood storages in a reservoirs group for chopping flood peak, a general relationship among the flood events, the flood storages and the chopping peak has been quantified through Chopping Peak Function (CPF). And we have derived the analytical solutions for a single, a parallel or a cascade reservoirs group while numerical solution for a mixed reservoirs group to their corresponding CPF. Based on the solutions to their CPF, the mechanism is clarified for the integrated reservoirs flood storages regulation. The derived analytical solutions have also been proven to be more efficient for integrating the reservoirs regulation than for only every single reservoir regulation. The numerical solutions for the mixed reservoirs groups are found to be better than that of optimal reservoirs regulation model through NSGA-II in terms of the number and the distribution range of the Pareto frontier. Therefore, our study will not only help understand the regulation of the flood storages in reservoirs groups for chopping flood peak, but also find an efficient way to prevent flood hazard.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.