Jing Xie , Kyoung-Min Kim , Jaehong Park , Yoon Suk Kim , Wooyong Park , Byung Chul Jung , Vidya Chandrabose , Zubair Khalid , Tae-il Kim , Jae-Min Oh
{"title":"具有长度和大小选择性的层状双氢氧化物对DNA亲和力的尺寸精度","authors":"Jing Xie , Kyoung-Min Kim , Jaehong Park , Yoon Suk Kim , Wooyong Park , Byung Chul Jung , Vidya Chandrabose , Zubair Khalid , Tae-il Kim , Jae-Min Oh","doi":"10.1016/j.clay.2025.107852","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we demonstrated that deoxyribonucleic acid (DNA) strands selectively bind to the surfaces of size-customized layered double hydroxide (LDH) particles, driven by a distinct size-matching interaction between the adsorbate and adsorbent. High-purity LDHs with specific particle sizes – LDH-S (small) and LDH-L (large) – were synthesized, and their DNA adsorption behaviors were systematically examined. The LDH-S exhibited a higher specific surface energy and zeta potential than LDH-L; whereas LDH-L possessed a well-ordered crystalline structure along the crystallographic ab-plane compared to LDH-S. According to the adsorption isotherm, the DNA strands were adsorbed onto the LDH surface in a multilayer manner. The mathematical fitting indicated that LDH-S had a higher adsorption capacity and less cooperative adsorption than LDH-L. Electrophoresis using size-specific ladder DNA confirmed that LDH adsorbed DNA in a size-selective manner; ladder DNA below 800 base pairs selectively adsorbed on LDH-S, while DNA above 800 base pairs preferred adsorption on LDH-L. The binding assay using large plasmid DNA corroborated that LDH-L displayed superior adsorption efficiency for large DNA fragments. The distinctive preference of LDH-L for large DNA might be due to cooperative interactions among DNA strands on expansive surfaces with periodic electrostatic interaction sites.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"273 ","pages":"Article 107852"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensional precision in DNA affinity by layered double hydroxides with length and size selectivity\",\"authors\":\"Jing Xie , Kyoung-Min Kim , Jaehong Park , Yoon Suk Kim , Wooyong Park , Byung Chul Jung , Vidya Chandrabose , Zubair Khalid , Tae-il Kim , Jae-Min Oh\",\"doi\":\"10.1016/j.clay.2025.107852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we demonstrated that deoxyribonucleic acid (DNA) strands selectively bind to the surfaces of size-customized layered double hydroxide (LDH) particles, driven by a distinct size-matching interaction between the adsorbate and adsorbent. High-purity LDHs with specific particle sizes – LDH-S (small) and LDH-L (large) – were synthesized, and their DNA adsorption behaviors were systematically examined. The LDH-S exhibited a higher specific surface energy and zeta potential than LDH-L; whereas LDH-L possessed a well-ordered crystalline structure along the crystallographic ab-plane compared to LDH-S. According to the adsorption isotherm, the DNA strands were adsorbed onto the LDH surface in a multilayer manner. The mathematical fitting indicated that LDH-S had a higher adsorption capacity and less cooperative adsorption than LDH-L. Electrophoresis using size-specific ladder DNA confirmed that LDH adsorbed DNA in a size-selective manner; ladder DNA below 800 base pairs selectively adsorbed on LDH-S, while DNA above 800 base pairs preferred adsorption on LDH-L. The binding assay using large plasmid DNA corroborated that LDH-L displayed superior adsorption efficiency for large DNA fragments. The distinctive preference of LDH-L for large DNA might be due to cooperative interactions among DNA strands on expansive surfaces with periodic electrostatic interaction sites.</div></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"273 \",\"pages\":\"Article 107852\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131725001577\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725001577","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Dimensional precision in DNA affinity by layered double hydroxides with length and size selectivity
In this study, we demonstrated that deoxyribonucleic acid (DNA) strands selectively bind to the surfaces of size-customized layered double hydroxide (LDH) particles, driven by a distinct size-matching interaction between the adsorbate and adsorbent. High-purity LDHs with specific particle sizes – LDH-S (small) and LDH-L (large) – were synthesized, and their DNA adsorption behaviors were systematically examined. The LDH-S exhibited a higher specific surface energy and zeta potential than LDH-L; whereas LDH-L possessed a well-ordered crystalline structure along the crystallographic ab-plane compared to LDH-S. According to the adsorption isotherm, the DNA strands were adsorbed onto the LDH surface in a multilayer manner. The mathematical fitting indicated that LDH-S had a higher adsorption capacity and less cooperative adsorption than LDH-L. Electrophoresis using size-specific ladder DNA confirmed that LDH adsorbed DNA in a size-selective manner; ladder DNA below 800 base pairs selectively adsorbed on LDH-S, while DNA above 800 base pairs preferred adsorption on LDH-L. The binding assay using large plasmid DNA corroborated that LDH-L displayed superior adsorption efficiency for large DNA fragments. The distinctive preference of LDH-L for large DNA might be due to cooperative interactions among DNA strands on expansive surfaces with periodic electrostatic interaction sites.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...