{"title":"三次图的度平衡分解","authors":"Borut Lužar , Jakub Przybyło , Roman Soták","doi":"10.1016/j.ejc.2025.104169","DOIUrl":null,"url":null,"abstract":"<div><div>We show that every cubic graph on <span><math><mi>n</mi></math></span> vertices contains a spanning subgraph in which the number of vertices of each degree deviates from <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> by at most <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, up to three exceptions. This resolves the conjecture of Alon and Wei (2023) for cubic graphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104169"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree-balanced decompositions of cubic graphs\",\"authors\":\"Borut Lužar , Jakub Przybyło , Roman Soták\",\"doi\":\"10.1016/j.ejc.2025.104169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that every cubic graph on <span><math><mi>n</mi></math></span> vertices contains a spanning subgraph in which the number of vertices of each degree deviates from <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> by at most <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, up to three exceptions. This resolves the conjecture of Alon and Wei (2023) for cubic graphs.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"128 \",\"pages\":\"Article 104169\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000526\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000526","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that every cubic graph on vertices contains a spanning subgraph in which the number of vertices of each degree deviates from by at most , up to three exceptions. This resolves the conjecture of Alon and Wei (2023) for cubic graphs.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.