子空间、子集和莫兹金路径

IF 0.9 3区 数学 Q1 MATHEMATICS
Jonathan D. Farley , Murali K. Srinivasan
{"title":"子空间、子集和莫兹金路径","authors":"Jonathan D. Farley ,&nbsp;Murali K. Srinivasan","doi":"10.1016/j.ejc.2025.104173","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the set of all Motzkin paths from <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span> to <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span>. For each <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> we define a statistic <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>, the weight of <span><math><mi>P</mi></math></span>. Let <span><math><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></math></span> denote the number of down steps in <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the projective geometry (= poset of subspaces of an <span><math><mi>n</mi></math></span>-dimensional vector space over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>). We define a map from <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> and show that, for <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, the inverse image of <span><math><mi>P</mi></math></span> consists of a disjoint union of <span><math><mrow><msup><mrow><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></msup><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> symmetric Boolean subsets in <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, all with minimum rank <span><math><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></math></span> and maximum rank <span><math><mrow><mi>n</mi><mo>−</mo><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></math></span>. This yields an explicit symmetric Boolean decomposition of the projective geometry and gives a poset theoretic interpretation to the identity <span><span><span><math><mrow><msub><mrow><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mfenced></mrow><mrow><mi>q</mi></mrow></msub><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></msup><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow><mrow><mi>k</mi><mo>−</mo><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></mfrac></mfenced><mo>.</mo></mrow></math></span></span></span></div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104173"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subspaces, subsets, and Motzkin paths\",\"authors\":\"Jonathan D. Farley ,&nbsp;Murali K. Srinivasan\",\"doi\":\"10.1016/j.ejc.2025.104173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the set of all Motzkin paths from <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span> to <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span>. For each <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> we define a statistic <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>, the weight of <span><math><mi>P</mi></math></span>. Let <span><math><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></math></span> denote the number of down steps in <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the projective geometry (= poset of subspaces of an <span><math><mi>n</mi></math></span>-dimensional vector space over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>). We define a map from <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> and show that, for <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, the inverse image of <span><math><mi>P</mi></math></span> consists of a disjoint union of <span><math><mrow><msup><mrow><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></msup><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> symmetric Boolean subsets in <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, all with minimum rank <span><math><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></math></span> and maximum rank <span><math><mrow><mi>n</mi><mo>−</mo><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></math></span>. This yields an explicit symmetric Boolean decomposition of the projective geometry and gives a poset theoretic interpretation to the identity <span><span><span><math><mrow><msub><mrow><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mfenced></mrow><mrow><mi>q</mi></mrow></msub><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></msup><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow><mrow><mi>k</mi><mo>−</mo><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></mfrac></mfenced><mo>.</mo></mrow></math></span></span></span></div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"128 \",\"pages\":\"Article 104173\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000563\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000563","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M(n)表示从(0,0)到(n,0)的所有Motzkin路径的集合。对于每一个P∈M(n),我们定义一个统计量w(P,q), P的权值,设|P|表示P∈M(n)中的下阶数。设Bq(n)表示射影几何(= n维向量空间在Fq上的子空间的偏置集)。我们定义了一个从Bq(n)到M(n)的映射,并证明了对于P∈M(n), P的逆像由Bq(n)中的(q−1)|P|w(P,q)个对称布尔子集的不相交并构成,这些子集都具有最小秩|P|和最大秩n−|P|。这得到了射影几何的显式对称布尔分解,并给出了单位nkq=∑P∈M(n)(q−1)|P|w(P,q)n−2|P|k−|P|的偏序集理论解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subspaces, subsets, and Motzkin paths
Let M(n) denote the set of all Motzkin paths from (0,0) to (n,0). For each PM(n) we define a statistic w(P,q), the weight of P. Let |P| denote the number of down steps in PM(n). Let Bq(n) denote the projective geometry (= poset of subspaces of an n-dimensional vector space over Fq). We define a map from Bq(n) to M(n) and show that, for PM(n), the inverse image of P consists of a disjoint union of (q1)|P|w(P,q) symmetric Boolean subsets in Bq(n), all with minimum rank |P| and maximum rank n|P|. This yields an explicit symmetric Boolean decomposition of the projective geometry and gives a poset theoretic interpretation to the identity nkq=PM(n)(q1)|P|w(P,q)n2|P|k|P|.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信