{"title":"子空间、子集和莫兹金路径","authors":"Jonathan D. Farley , Murali K. Srinivasan","doi":"10.1016/j.ejc.2025.104173","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the set of all Motzkin paths from <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span> to <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span>. For each <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> we define a statistic <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>, the weight of <span><math><mi>P</mi></math></span>. Let <span><math><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></math></span> denote the number of down steps in <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the projective geometry (= poset of subspaces of an <span><math><mi>n</mi></math></span>-dimensional vector space over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>). We define a map from <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> and show that, for <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, the inverse image of <span><math><mi>P</mi></math></span> consists of a disjoint union of <span><math><mrow><msup><mrow><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></msup><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> symmetric Boolean subsets in <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, all with minimum rank <span><math><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></math></span> and maximum rank <span><math><mrow><mi>n</mi><mo>−</mo><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></math></span>. This yields an explicit symmetric Boolean decomposition of the projective geometry and gives a poset theoretic interpretation to the identity <span><span><span><math><mrow><msub><mrow><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mfenced></mrow><mrow><mi>q</mi></mrow></msub><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></msup><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow><mrow><mi>k</mi><mo>−</mo><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></mfrac></mfenced><mo>.</mo></mrow></math></span></span></span></div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104173"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subspaces, subsets, and Motzkin paths\",\"authors\":\"Jonathan D. Farley , Murali K. Srinivasan\",\"doi\":\"10.1016/j.ejc.2025.104173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the set of all Motzkin paths from <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span> to <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span>. For each <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> we define a statistic <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span>, the weight of <span><math><mi>P</mi></math></span>. Let <span><math><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></math></span> denote the number of down steps in <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the projective geometry (= poset of subspaces of an <span><math><mi>n</mi></math></span>-dimensional vector space over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>). We define a map from <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> to <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> and show that, for <span><math><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, the inverse image of <span><math><mi>P</mi></math></span> consists of a disjoint union of <span><math><mrow><msup><mrow><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></msup><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> symmetric Boolean subsets in <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>q</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, all with minimum rank <span><math><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></math></span> and maximum rank <span><math><mrow><mi>n</mi><mo>−</mo><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></math></span>. This yields an explicit symmetric Boolean decomposition of the projective geometry and gives a poset theoretic interpretation to the identity <span><span><span><math><mrow><msub><mrow><mfenced><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mfenced></mrow><mrow><mi>q</mi></mrow></msub><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>P</mi><mo>∈</mo><mi>M</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></munder><msup><mrow><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></msup><mi>w</mi><mrow><mo>(</mo><mi>P</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow><mfenced><mfrac><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow><mrow><mi>k</mi><mo>−</mo><mrow><mo>|</mo><mi>P</mi><mo>|</mo></mrow></mrow></mfrac></mfenced><mo>.</mo></mrow></math></span></span></span></div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"128 \",\"pages\":\"Article 104173\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000563\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000563","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let denote the set of all Motzkin paths from to . For each we define a statistic , the weight of . Let denote the number of down steps in . Let denote the projective geometry (= poset of subspaces of an -dimensional vector space over ). We define a map from to and show that, for , the inverse image of consists of a disjoint union of symmetric Boolean subsets in , all with minimum rank and maximum rank . This yields an explicit symmetric Boolean decomposition of the projective geometry and gives a poset theoretic interpretation to the identity
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.