无穷多个最小非拉姆齐大小线性图

IF 0.9 3区 数学 Q1 MATHEMATICS
Yuval Wigderson
{"title":"无穷多个最小非拉姆齐大小线性图","authors":"Yuval Wigderson","doi":"10.1016/j.ejc.2025.104175","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <span><math><mi>G</mi></math></span> is said to be Ramsey size-linear if <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>e</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> for every graph <span><math><mi>H</mi></math></span> with no isolated vertices. Erdős, Faudree, Rousseau, and Schelp observed that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is not Ramsey size-linear, but each of its proper subgraphs is, and they asked whether there exist infinitely many such graphs. In this short note, we answer this question in the affirmative.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104175"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many minimally non-Ramsey size-linear graphs\",\"authors\":\"Yuval Wigderson\",\"doi\":\"10.1016/j.ejc.2025.104175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph <span><math><mi>G</mi></math></span> is said to be Ramsey size-linear if <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>O</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>e</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> for every graph <span><math><mi>H</mi></math></span> with no isolated vertices. Erdős, Faudree, Rousseau, and Schelp observed that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is not Ramsey size-linear, but each of its proper subgraphs is, and they asked whether there exist infinitely many such graphs. In this short note, we answer this question in the affirmative.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"128 \",\"pages\":\"Article 104175\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825000605\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000605","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于没有孤立顶点的每个图H,如果r(G,H)=OG(e(H)),则图G是拉姆齐大小线性的。Erdős, Faudree, Rousseau和Schelp观察到K4不是拉姆齐大小线性的,但它的每个适当子图都是线性的,他们问是否存在无限多个这样的图。在这篇短文中,我们肯定地回答了这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely many minimally non-Ramsey size-linear graphs
A graph G is said to be Ramsey size-linear if r(G,H)=OG(e(H)) for every graph H with no isolated vertices. Erdős, Faudree, Rousseau, and Schelp observed that K4 is not Ramsey size-linear, but each of its proper subgraphs is, and they asked whether there exist infinitely many such graphs. In this short note, we answer this question in the affirmative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信