基于马尔可夫链相关性的子集模拟方差估计改进

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Qingqing Miao, Ying Min Low
{"title":"基于马尔可夫链相关性的子集模拟方差估计改进","authors":"Qingqing Miao,&nbsp;Ying Min Low","doi":"10.1016/j.strusafe.2025.102606","DOIUrl":null,"url":null,"abstract":"<div><div>Subset simulation (SS) is a popular structural reliability analysis method, especially for problems characterized by low failure probabilities and high-dimensional complexities. Unlike most variance reduction methods, SS obviates the need for prior domain information, making it versatile across diverse applications. Markov chain Monte Carlo (MCMC) algorithms are required for sampling from an unknown conditional distribution, resulting in correlated samples. There is plenty of literature on SS in several aspects, such as the improvement of MCMC algorithms, and combining SS with other techniques. However, one aspect that appears to be neglected concerns the variance estimation crucial for assessing the accuracy of the probability estimate. To date, most studies on SS still rely on the conventional variance estimation method, which only considers the correlation within a Markov chain (intrachain) but neglects the correlation across separate chains (interchain) and different subset levels (interlevel). This study aims to improve understanding of this topic and develop a more accurate variance estimation method for SS. An investigation based on multiple independent SS runs reveal that the intrachain, interchain and interlevel correlations are all important. Subsequently, a new variance estimation method is proposed to account for the intrachain and interchain correlations. The proposed method is easy to apply, has small sampling uncertainty and only utilizes samples from a single SS run. Results indicate a notable improvement in accuracy compared to the conventional method.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"116 ","pages":"Article 102606"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved variance estimation for subset simulation by accounting for the correlation between Markov chains\",\"authors\":\"Qingqing Miao,&nbsp;Ying Min Low\",\"doi\":\"10.1016/j.strusafe.2025.102606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Subset simulation (SS) is a popular structural reliability analysis method, especially for problems characterized by low failure probabilities and high-dimensional complexities. Unlike most variance reduction methods, SS obviates the need for prior domain information, making it versatile across diverse applications. Markov chain Monte Carlo (MCMC) algorithms are required for sampling from an unknown conditional distribution, resulting in correlated samples. There is plenty of literature on SS in several aspects, such as the improvement of MCMC algorithms, and combining SS with other techniques. However, one aspect that appears to be neglected concerns the variance estimation crucial for assessing the accuracy of the probability estimate. To date, most studies on SS still rely on the conventional variance estimation method, which only considers the correlation within a Markov chain (intrachain) but neglects the correlation across separate chains (interchain) and different subset levels (interlevel). This study aims to improve understanding of this topic and develop a more accurate variance estimation method for SS. An investigation based on multiple independent SS runs reveal that the intrachain, interchain and interlevel correlations are all important. Subsequently, a new variance estimation method is proposed to account for the intrachain and interchain correlations. The proposed method is easy to apply, has small sampling uncertainty and only utilizes samples from a single SS run. Results indicate a notable improvement in accuracy compared to the conventional method.</div></div>\",\"PeriodicalId\":21978,\"journal\":{\"name\":\"Structural Safety\",\"volume\":\"116 \",\"pages\":\"Article 102606\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167473025000347\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473025000347","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

子集模拟(SS)是一种流行的结构可靠性分析方法,尤其适用于低失效概率和高维复杂性的问题。与大多数方差减少方法不同,SS消除了对先验域信息的需要,使其在不同的应用中通用。马尔可夫链蒙特卡罗(MCMC)算法需要从一个未知的条件分布中采样,从而得到相关的样本。在MCMC算法的改进、SS与其他技术的结合等几个方面都有大量关于SS的文献。然而,有一个方面似乎被忽略了,那就是对评估概率估计的准确性至关重要的方差估计。迄今为止,大多数关于SS的研究仍然依赖于传统的方差估计方法,该方法只考虑马尔可夫链内(链内)的相关性,而忽略了不同链间(链间)和不同子集水平(水平间)的相关性。本研究旨在提高对这一主题的理解,并开发更准确的SS方差估计方法。基于多个独立SS运行的调查表明,链内、链间和水平间的相关性都很重要。随后,提出了一种新的方差估计方法来考虑链内和链间的相关性。该方法易于应用,采样不确定度小,仅利用单次SS运行的样本。结果表明,与传统方法相比,该方法的准确性有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved variance estimation for subset simulation by accounting for the correlation between Markov chains
Subset simulation (SS) is a popular structural reliability analysis method, especially for problems characterized by low failure probabilities and high-dimensional complexities. Unlike most variance reduction methods, SS obviates the need for prior domain information, making it versatile across diverse applications. Markov chain Monte Carlo (MCMC) algorithms are required for sampling from an unknown conditional distribution, resulting in correlated samples. There is plenty of literature on SS in several aspects, such as the improvement of MCMC algorithms, and combining SS with other techniques. However, one aspect that appears to be neglected concerns the variance estimation crucial for assessing the accuracy of the probability estimate. To date, most studies on SS still rely on the conventional variance estimation method, which only considers the correlation within a Markov chain (intrachain) but neglects the correlation across separate chains (interchain) and different subset levels (interlevel). This study aims to improve understanding of this topic and develop a more accurate variance estimation method for SS. An investigation based on multiple independent SS runs reveal that the intrachain, interchain and interlevel correlations are all important. Subsequently, a new variance estimation method is proposed to account for the intrachain and interchain correlations. The proposed method is easy to apply, has small sampling uncertainty and only utilizes samples from a single SS run. Results indicate a notable improvement in accuracy compared to the conventional method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信