{"title":"线粒体与阿尔茨海默病和心力衰竭有关","authors":"Anupriya Sinha , Natasha Jaiswal , Pooja Jadiya , Dhanendra Tomar","doi":"10.1016/j.cophys.2025.100830","DOIUrl":null,"url":null,"abstract":"<div><div>The brain and heart are intricately linked, with dysfunction in one organ often affecting the other. Cardiovascular diseases (CVDs), particularly heart failure, impair cerebral blood flow, contributing to cognitive decline and increasing dementia risk. Conversely, Alzheimer’s disease (AD), marked by amyloid-beta plaques and tau tangles, impacts cardiac function. A shared mechanism between AD and CVDs is mitochondrial dysfunction, which disrupts energy production and oxidative balance, worsening both neurodegeneration and heart health. This interdependence underscores the potential for mitochondria-targeted therapies to address both conditions. With an aging population facing rising incidences of AD and CVDs, understanding these interconnected pathways and the central role of mitochondria could inform new therapeutic strategies and improve outcomes in both neurodegenerative and cardiovascular diseases.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"44 ","pages":"Article 100830"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial connection to Alzheimer’s disease and heart failure\",\"authors\":\"Anupriya Sinha , Natasha Jaiswal , Pooja Jadiya , Dhanendra Tomar\",\"doi\":\"10.1016/j.cophys.2025.100830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The brain and heart are intricately linked, with dysfunction in one organ often affecting the other. Cardiovascular diseases (CVDs), particularly heart failure, impair cerebral blood flow, contributing to cognitive decline and increasing dementia risk. Conversely, Alzheimer’s disease (AD), marked by amyloid-beta plaques and tau tangles, impacts cardiac function. A shared mechanism between AD and CVDs is mitochondrial dysfunction, which disrupts energy production and oxidative balance, worsening both neurodegeneration and heart health. This interdependence underscores the potential for mitochondria-targeted therapies to address both conditions. With an aging population facing rising incidences of AD and CVDs, understanding these interconnected pathways and the central role of mitochondria could inform new therapeutic strategies and improve outcomes in both neurodegenerative and cardiovascular diseases.</div></div>\",\"PeriodicalId\":52156,\"journal\":{\"name\":\"Current Opinion in Physiology\",\"volume\":\"44 \",\"pages\":\"Article 100830\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468867325000185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468867325000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Mitochondrial connection to Alzheimer’s disease and heart failure
The brain and heart are intricately linked, with dysfunction in one organ often affecting the other. Cardiovascular diseases (CVDs), particularly heart failure, impair cerebral blood flow, contributing to cognitive decline and increasing dementia risk. Conversely, Alzheimer’s disease (AD), marked by amyloid-beta plaques and tau tangles, impacts cardiac function. A shared mechanism between AD and CVDs is mitochondrial dysfunction, which disrupts energy production and oxidative balance, worsening both neurodegeneration and heart health. This interdependence underscores the potential for mitochondria-targeted therapies to address both conditions. With an aging population facing rising incidences of AD and CVDs, understanding these interconnected pathways and the central role of mitochondria could inform new therapeutic strategies and improve outcomes in both neurodegenerative and cardiovascular diseases.