{"title":"双乳皮克林稳定:基本概念,原理,制备,潜在应用,挑战和未来展望","authors":"Anuj Niroula , Albert T. Poortinga , Akmal Nazir","doi":"10.1016/j.cis.2025.103531","DOIUrl":null,"url":null,"abstract":"<div><div>Double emulsions (DEs) offer unique compartmentalized structures but are inherently unstable, prompting significant scientific and industrial efforts to enhance their stability. One promising strategy is the use of solid particles—known as Pickering stabilization—resulting in Pickering double emulsions (PDEs), which overcome many limitations of conventional low-molecular-weight (LMW) surfactants. However, the term “Pickering” is often misused in the literature to describe any formulation containing particles, regardless of whether the interface is fully stabilized by them. This review aims to clarify the concept of Pickering stabilization, outline the rationale for its application to DEs, and examine preparation mechanisms, interfacial approaches, potential applications, and current challenges.</div><div>Particles with dual wettability and high desorption energy irreversibly adsorb at interfaces, forming robust mechanical barriers that inhibit coalescence and reduce diffusion or escape of internal droplets. PDEs can be prepared via two-step emulsification, one-step processes, or advanced microfluidic methods. A variety of Pickering approaches have been developed to engineer particles capable of dual interfacial stabilization, enabling sophisticated functions such as (co-)encapsulation, controlled release, and the formation of hierarchical structures like microspheres, colloidosomes, and antibubbles. To unlock the full potential of PDEs for industrial applications, future research should prioritize eliminating surfactant use, developing safe and sustainable particles, and advancing scalable production methods without compromising emulsion stability or performance.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"343 ","pages":"Article 103531"},"PeriodicalIF":15.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pickering stabilization of double emulsions: Basic concepts, rationale, preparation, potential applications, challenges, and future perspectives\",\"authors\":\"Anuj Niroula , Albert T. Poortinga , Akmal Nazir\",\"doi\":\"10.1016/j.cis.2025.103531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Double emulsions (DEs) offer unique compartmentalized structures but are inherently unstable, prompting significant scientific and industrial efforts to enhance their stability. One promising strategy is the use of solid particles—known as Pickering stabilization—resulting in Pickering double emulsions (PDEs), which overcome many limitations of conventional low-molecular-weight (LMW) surfactants. However, the term “Pickering” is often misused in the literature to describe any formulation containing particles, regardless of whether the interface is fully stabilized by them. This review aims to clarify the concept of Pickering stabilization, outline the rationale for its application to DEs, and examine preparation mechanisms, interfacial approaches, potential applications, and current challenges.</div><div>Particles with dual wettability and high desorption energy irreversibly adsorb at interfaces, forming robust mechanical barriers that inhibit coalescence and reduce diffusion or escape of internal droplets. PDEs can be prepared via two-step emulsification, one-step processes, or advanced microfluidic methods. A variety of Pickering approaches have been developed to engineer particles capable of dual interfacial stabilization, enabling sophisticated functions such as (co-)encapsulation, controlled release, and the formation of hierarchical structures like microspheres, colloidosomes, and antibubbles. To unlock the full potential of PDEs for industrial applications, future research should prioritize eliminating surfactant use, developing safe and sustainable particles, and advancing scalable production methods without compromising emulsion stability or performance.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"343 \",\"pages\":\"Article 103531\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868625001423\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625001423","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Pickering stabilization of double emulsions: Basic concepts, rationale, preparation, potential applications, challenges, and future perspectives
Double emulsions (DEs) offer unique compartmentalized structures but are inherently unstable, prompting significant scientific and industrial efforts to enhance their stability. One promising strategy is the use of solid particles—known as Pickering stabilization—resulting in Pickering double emulsions (PDEs), which overcome many limitations of conventional low-molecular-weight (LMW) surfactants. However, the term “Pickering” is often misused in the literature to describe any formulation containing particles, regardless of whether the interface is fully stabilized by them. This review aims to clarify the concept of Pickering stabilization, outline the rationale for its application to DEs, and examine preparation mechanisms, interfacial approaches, potential applications, and current challenges.
Particles with dual wettability and high desorption energy irreversibly adsorb at interfaces, forming robust mechanical barriers that inhibit coalescence and reduce diffusion or escape of internal droplets. PDEs can be prepared via two-step emulsification, one-step processes, or advanced microfluidic methods. A variety of Pickering approaches have been developed to engineer particles capable of dual interfacial stabilization, enabling sophisticated functions such as (co-)encapsulation, controlled release, and the formation of hierarchical structures like microspheres, colloidosomes, and antibubbles. To unlock the full potential of PDEs for industrial applications, future research should prioritize eliminating surfactant use, developing safe and sustainable particles, and advancing scalable production methods without compromising emulsion stability or performance.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.