一个使近岸红外视频超分辨率学习更多高频前景信息的管道

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yuanlin Zhao , Wei Li , Jiangang Ding , Yansong Wang , Yihui Shan , Lili Pei
{"title":"一个使近岸红外视频超分辨率学习更多高频前景信息的管道","authors":"Yuanlin Zhao ,&nbsp;Wei Li ,&nbsp;Jiangang Ding ,&nbsp;Yansong Wang ,&nbsp;Yihui Shan ,&nbsp;Lili Pei","doi":"10.1016/j.neunet.2025.107547","DOIUrl":null,"url":null,"abstract":"<div><div>A key challenge in Nearshore Infrared Video Super-resolution (NIVSR) is the limited high-frequency foreground information. The most common approach is to fuse frames in order to learn cross-temporal information. However, existing methods struggle to achieve pixel-level reconstruction of foreground features in infrared video with limited detail. This factor is further amplified due to the transformation of the image into patches in the Super-Resolution (SR) process. This paper presents a novel spatial and temporal network, TASNet, designed to improve reconstruction quality. TASNet models the video in terms of both spatial and temporal features, facilitating their interaction. The Efficient Foreground Information Perception (EFIP) module leverages feature variations to emphasize foreground information in the current frame. Temporal-Difference Learning (TDL) learns information from different frames and integrates it using learnable weights. Additionally, a strategy utilizing the long-context comprehension of Visual Transformers (ViT) is introduced to mitigate temporal discrepancies between frames. The method is simple, robust, and surpasses State-of-the-art (SOTA) techniques in benchmark experiments (TASNet: 28.33 Peak Signal-to-Noise Ratio (PSNR), 0.9122 Structural Similarity Index Measure (SSIM); RBPN: 27.27 PSNR, 0.9024 (SSIM). The source code is in the <span><span>https://github.com/Yuanlin-Zhao/TASNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"189 ","pages":"Article 107547"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pipeline for enabling Nearshore Infrared Video Super-resolution to learn more high-frequency foreground information\",\"authors\":\"Yuanlin Zhao ,&nbsp;Wei Li ,&nbsp;Jiangang Ding ,&nbsp;Yansong Wang ,&nbsp;Yihui Shan ,&nbsp;Lili Pei\",\"doi\":\"10.1016/j.neunet.2025.107547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A key challenge in Nearshore Infrared Video Super-resolution (NIVSR) is the limited high-frequency foreground information. The most common approach is to fuse frames in order to learn cross-temporal information. However, existing methods struggle to achieve pixel-level reconstruction of foreground features in infrared video with limited detail. This factor is further amplified due to the transformation of the image into patches in the Super-Resolution (SR) process. This paper presents a novel spatial and temporal network, TASNet, designed to improve reconstruction quality. TASNet models the video in terms of both spatial and temporal features, facilitating their interaction. The Efficient Foreground Information Perception (EFIP) module leverages feature variations to emphasize foreground information in the current frame. Temporal-Difference Learning (TDL) learns information from different frames and integrates it using learnable weights. Additionally, a strategy utilizing the long-context comprehension of Visual Transformers (ViT) is introduced to mitigate temporal discrepancies between frames. The method is simple, robust, and surpasses State-of-the-art (SOTA) techniques in benchmark experiments (TASNet: 28.33 Peak Signal-to-Noise Ratio (PSNR), 0.9122 Structural Similarity Index Measure (SSIM); RBPN: 27.27 PSNR, 0.9024 (SSIM). The source code is in the <span><span>https://github.com/Yuanlin-Zhao/TASNet</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"189 \",\"pages\":\"Article 107547\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025004265\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025004265","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近岸红外视频超分辨率(NIVSR)的一个关键挑战是有限的高频前景信息。最常见的方法是融合框架以学习跨时间信息。然而,现有的方法难以在细节有限的红外视频中实现像素级前景特征的重建。由于在超分辨率(SR)过程中将图像转换为补丁,因此该因素进一步放大。本文提出了一种新的时空网络——TASNet,旨在提高重建质量。TASNet从空间和时间两个方面对视频进行建模,促进它们之间的交互。高效前景信息感知(EFIP)模块利用特征变化来强调当前帧中的前景信息。时间差学习(TDL)从不同的框架中学习信息,并使用可学习权值对其进行整合。此外,还引入了一种利用视觉变形的长上下文理解策略来缓解帧间的时间差异。该方法简单,鲁棒性好,在基准实验中优于最先进的SOTA技术(TASNet: 28.33峰值信噪比(PSNR), 0.9122结构相似指数测度(SSIM);Rbpn: 27.27 psnr, 0.9024 (ssim)。源代码在https://github.com/Yuanlin-Zhao/TASNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A pipeline for enabling Nearshore Infrared Video Super-resolution to learn more high-frequency foreground information
A key challenge in Nearshore Infrared Video Super-resolution (NIVSR) is the limited high-frequency foreground information. The most common approach is to fuse frames in order to learn cross-temporal information. However, existing methods struggle to achieve pixel-level reconstruction of foreground features in infrared video with limited detail. This factor is further amplified due to the transformation of the image into patches in the Super-Resolution (SR) process. This paper presents a novel spatial and temporal network, TASNet, designed to improve reconstruction quality. TASNet models the video in terms of both spatial and temporal features, facilitating their interaction. The Efficient Foreground Information Perception (EFIP) module leverages feature variations to emphasize foreground information in the current frame. Temporal-Difference Learning (TDL) learns information from different frames and integrates it using learnable weights. Additionally, a strategy utilizing the long-context comprehension of Visual Transformers (ViT) is introduced to mitigate temporal discrepancies between frames. The method is simple, robust, and surpasses State-of-the-art (SOTA) techniques in benchmark experiments (TASNet: 28.33 Peak Signal-to-Noise Ratio (PSNR), 0.9122 Structural Similarity Index Measure (SSIM); RBPN: 27.27 PSNR, 0.9024 (SSIM). The source code is in the https://github.com/Yuanlin-Zhao/TASNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信