{"title":"含塑性和非塑性细粒砂中微生物诱导的部分饱和液化减缓性能","authors":"Maya Norris, Ali Farahani, Majid Ghayoomi","doi":"10.1016/j.soildyn.2025.109494","DOIUrl":null,"url":null,"abstract":"<div><div>The mitigation of seismic soil liquefaction in sand with fine content presents a challenge, demanding efficient strategies. This research explores the efficacy of Microbial-Induced Partial Saturation (MIPS) as a bio-geotechnical technique to improve the liquefaction resistance of sandy soils with plastic fines. By leveraging the natural metabolic processes of indigenous microorganisms, this method introduces biogenic gas production within the soil matrix, effectively reducing its degree of saturation. This partial desaturation alters the soil's response to cyclic loading, aiming to mitigate the risk of liquefaction under dynamic loading conditions. Experimental results from a series of undrained strain-controlled cyclic shear tests reveal that even a modest reduction in saturation significantly enhances the soil's stability against seismic-induced liquefaction. The investigation extends to analyzing the effectiveness of the MIPS treatment in sands with low-plasticity clay content, offering insights into the interaction between microbial activity, soil texture, and liquefaction potential. Results show that while plasticity plays a key role in improving the cyclic response of soils, the influence of MIPS treatment remains noteworthy, even in sand with plastic fines. Additionally, a modified predictive formulation is introduced, incorporating a calibrated parameter to account for the influence of fines' plasticity on excess pore pressure generation.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"196 ","pages":"Article 109494"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of microbial induced partial saturation for liquefaction mitigation in sands containing plastic and non-plastic fines\",\"authors\":\"Maya Norris, Ali Farahani, Majid Ghayoomi\",\"doi\":\"10.1016/j.soildyn.2025.109494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mitigation of seismic soil liquefaction in sand with fine content presents a challenge, demanding efficient strategies. This research explores the efficacy of Microbial-Induced Partial Saturation (MIPS) as a bio-geotechnical technique to improve the liquefaction resistance of sandy soils with plastic fines. By leveraging the natural metabolic processes of indigenous microorganisms, this method introduces biogenic gas production within the soil matrix, effectively reducing its degree of saturation. This partial desaturation alters the soil's response to cyclic loading, aiming to mitigate the risk of liquefaction under dynamic loading conditions. Experimental results from a series of undrained strain-controlled cyclic shear tests reveal that even a modest reduction in saturation significantly enhances the soil's stability against seismic-induced liquefaction. The investigation extends to analyzing the effectiveness of the MIPS treatment in sands with low-plasticity clay content, offering insights into the interaction between microbial activity, soil texture, and liquefaction potential. Results show that while plasticity plays a key role in improving the cyclic response of soils, the influence of MIPS treatment remains noteworthy, even in sand with plastic fines. Additionally, a modified predictive formulation is introduced, incorporating a calibrated parameter to account for the influence of fines' plasticity on excess pore pressure generation.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"196 \",\"pages\":\"Article 109494\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726125002878\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125002878","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Performance of microbial induced partial saturation for liquefaction mitigation in sands containing plastic and non-plastic fines
The mitigation of seismic soil liquefaction in sand with fine content presents a challenge, demanding efficient strategies. This research explores the efficacy of Microbial-Induced Partial Saturation (MIPS) as a bio-geotechnical technique to improve the liquefaction resistance of sandy soils with plastic fines. By leveraging the natural metabolic processes of indigenous microorganisms, this method introduces biogenic gas production within the soil matrix, effectively reducing its degree of saturation. This partial desaturation alters the soil's response to cyclic loading, aiming to mitigate the risk of liquefaction under dynamic loading conditions. Experimental results from a series of undrained strain-controlled cyclic shear tests reveal that even a modest reduction in saturation significantly enhances the soil's stability against seismic-induced liquefaction. The investigation extends to analyzing the effectiveness of the MIPS treatment in sands with low-plasticity clay content, offering insights into the interaction between microbial activity, soil texture, and liquefaction potential. Results show that while plasticity plays a key role in improving the cyclic response of soils, the influence of MIPS treatment remains noteworthy, even in sand with plastic fines. Additionally, a modified predictive formulation is introduced, incorporating a calibrated parameter to account for the influence of fines' plasticity on excess pore pressure generation.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.