硒,银和金纳米颗粒:肝脏氧化应激和炎症减少的新策略

Karthik K Karunakar , Binoy Varghese Cheriyan , Dheena Babu , Devan P , Nandhini J , Suresh Kannan M , Lincy Yabase , Kunal Kataria
{"title":"硒,银和金纳米颗粒:肝脏氧化应激和炎症减少的新策略","authors":"Karthik K Karunakar ,&nbsp;Binoy Varghese Cheriyan ,&nbsp;Dheena Babu ,&nbsp;Devan P ,&nbsp;Nandhini J ,&nbsp;Suresh Kannan M ,&nbsp;Lincy Yabase ,&nbsp;Kunal Kataria","doi":"10.1016/j.ntm.2025.100085","DOIUrl":null,"url":null,"abstract":"<div><div>Liver failure, primarily driven by oxidative stress and inflammation, remains a significant clinical challenge. Conventional hepatoprotective strategies often fail to provide effective long-term protection, necessitating the exploration of novel therapeutic approaches. This review focuses on the hepatoprotective potential of selenium (SeNPs), silver (AgNPs), and gold nanoparticles (AuNPs), emphasizing their antioxidant, anti-inflammatory, and immunomodulatory mechanisms. SeNPs enhance antioxidant defenses by scavenging reactive oxygen species (ROS) and upregulating key enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx). AgNPs exhibit anti-inflammatory effects by modulating cytokine expression, reducing lipid peroxidation, and preserving hepatic architecture. AuNPs demonstrate biocompatibility, fibrosis prevention, and immune modulation through NF-κB and Nrf2 signaling. Despite their therapeutic promise, concerns regarding nanoparticle biocompatibility, stability, and potential toxicity remain key challenges for clinical translation. This review aims to explore the role of (SeNPs), (AgNPs), and (AuNPs) in mitigating oxidative stress and inflammation in liver diseases, explore their mechanisms of hepatoprotection, assess the challenges associated with their biomedical applications, and provide insights into future directions for their clinical development. Addressing these gaps will be crucial in optimizing nanoparticle-based hepatoprotective therapies for safer and more effective liver disease management.</div></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"4 ","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selenium, silver, and gold nanoparticles: Emerging strategies for hepatic oxidative stress and inflammation reduction\",\"authors\":\"Karthik K Karunakar ,&nbsp;Binoy Varghese Cheriyan ,&nbsp;Dheena Babu ,&nbsp;Devan P ,&nbsp;Nandhini J ,&nbsp;Suresh Kannan M ,&nbsp;Lincy Yabase ,&nbsp;Kunal Kataria\",\"doi\":\"10.1016/j.ntm.2025.100085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Liver failure, primarily driven by oxidative stress and inflammation, remains a significant clinical challenge. Conventional hepatoprotective strategies often fail to provide effective long-term protection, necessitating the exploration of novel therapeutic approaches. This review focuses on the hepatoprotective potential of selenium (SeNPs), silver (AgNPs), and gold nanoparticles (AuNPs), emphasizing their antioxidant, anti-inflammatory, and immunomodulatory mechanisms. SeNPs enhance antioxidant defenses by scavenging reactive oxygen species (ROS) and upregulating key enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx). AgNPs exhibit anti-inflammatory effects by modulating cytokine expression, reducing lipid peroxidation, and preserving hepatic architecture. AuNPs demonstrate biocompatibility, fibrosis prevention, and immune modulation through NF-κB and Nrf2 signaling. Despite their therapeutic promise, concerns regarding nanoparticle biocompatibility, stability, and potential toxicity remain key challenges for clinical translation. This review aims to explore the role of (SeNPs), (AgNPs), and (AuNPs) in mitigating oxidative stress and inflammation in liver diseases, explore their mechanisms of hepatoprotection, assess the challenges associated with their biomedical applications, and provide insights into future directions for their clinical development. Addressing these gaps will be crucial in optimizing nanoparticle-based hepatoprotective therapies for safer and more effective liver disease management.</div></div>\",\"PeriodicalId\":100941,\"journal\":{\"name\":\"Nano TransMed\",\"volume\":\"4 \",\"pages\":\"Article 100085\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano TransMed\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2790676025000160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano TransMed","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2790676025000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肝衰竭,主要是由氧化应激和炎症引起的,仍然是一个重大的临床挑战。传统的肝保护策略往往不能提供有效的长期保护,需要探索新的治疗方法。本文综述了硒纳米粒子(SeNPs)、银纳米粒子(AgNPs)和金纳米粒子(AuNPs)的肝保护潜力,重点介绍了它们的抗氧化、抗炎和免疫调节机制。SeNPs通过清除活性氧(ROS)和上调超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GPx)等关键酶来增强抗氧化防御能力。AgNPs通过调节细胞因子表达、减少脂质过氧化和保护肝脏结构表现出抗炎作用。AuNPs通过NF-κB和Nrf2信号传导表现出生物相容性、纤维化预防和免疫调节。尽管纳米颗粒具有治疗前景,但对其生物相容性、稳定性和潜在毒性的担忧仍然是临床转化的关键挑战。本文旨在探讨(SeNPs)、(AgNPs)和(AuNPs)在肝脏疾病中减轻氧化应激和炎症的作用,探讨其保护肝脏的机制,评估其生物医学应用相关的挑战,并为其临床发展方向提供见解。解决这些差距对于优化基于纳米颗粒的肝保护疗法以实现更安全和更有效的肝病管理至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selenium, silver, and gold nanoparticles: Emerging strategies for hepatic oxidative stress and inflammation reduction
Liver failure, primarily driven by oxidative stress and inflammation, remains a significant clinical challenge. Conventional hepatoprotective strategies often fail to provide effective long-term protection, necessitating the exploration of novel therapeutic approaches. This review focuses on the hepatoprotective potential of selenium (SeNPs), silver (AgNPs), and gold nanoparticles (AuNPs), emphasizing their antioxidant, anti-inflammatory, and immunomodulatory mechanisms. SeNPs enhance antioxidant defenses by scavenging reactive oxygen species (ROS) and upregulating key enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx). AgNPs exhibit anti-inflammatory effects by modulating cytokine expression, reducing lipid peroxidation, and preserving hepatic architecture. AuNPs demonstrate biocompatibility, fibrosis prevention, and immune modulation through NF-κB and Nrf2 signaling. Despite their therapeutic promise, concerns regarding nanoparticle biocompatibility, stability, and potential toxicity remain key challenges for clinical translation. This review aims to explore the role of (SeNPs), (AgNPs), and (AuNPs) in mitigating oxidative stress and inflammation in liver diseases, explore their mechanisms of hepatoprotection, assess the challenges associated with their biomedical applications, and provide insights into future directions for their clinical development. Addressing these gaps will be crucial in optimizing nanoparticle-based hepatoprotective therapies for safer and more effective liver disease management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信