Lili Yang , Xin Sun , Hongwei Li , Ran Hao , Fengling Liu
{"title":"微藻-细菌固定化系统在废水处理中的新进展:机制、增强策略和应用前景","authors":"Lili Yang , Xin Sun , Hongwei Li , Ran Hao , Fengling Liu","doi":"10.1016/j.biortech.2025.132609","DOIUrl":null,"url":null,"abstract":"<div><div>The wastewater treatment based on the symbiosis of microalgae and bacteria has attracted increasing attention for its excellent pollutant removal efficiency, energy savings, and resource recovery. Among them, the microalgae-bacteria immobilization (MABI) system stands out by enhancing the electron transfer efficiency through carrier domain confinement, thereby overcoming bottlenecks of low light energy utilization and challenging biomass recycling. MABI is considered a key breakthrough for advancing engineering applications. However, a comprehensive exploration of MABI systems remains lacking. This review systematically summarizes the latest advancements, covering major immobilization techniques and the intrinsic mechanisms underlying microalgae-bacteria interactions and electron transport. Additionally, it explores enhancement strategies aimed at balancing microbial light energy allocation, optimizing nutrient supply, and constructing complementary ecological niches. The advantages and application prospects of MABI systems are highlighted. The review contributes to structuring the knowledge framework of MABI research and identifies critical gaps for future investigation.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"431 ","pages":"Article 132609"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insights into microalgal-bacterial immobilization systems for wastewater treatment: mechanisms, enhancement strategies, and application prospects\",\"authors\":\"Lili Yang , Xin Sun , Hongwei Li , Ran Hao , Fengling Liu\",\"doi\":\"10.1016/j.biortech.2025.132609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The wastewater treatment based on the symbiosis of microalgae and bacteria has attracted increasing attention for its excellent pollutant removal efficiency, energy savings, and resource recovery. Among them, the microalgae-bacteria immobilization (MABI) system stands out by enhancing the electron transfer efficiency through carrier domain confinement, thereby overcoming bottlenecks of low light energy utilization and challenging biomass recycling. MABI is considered a key breakthrough for advancing engineering applications. However, a comprehensive exploration of MABI systems remains lacking. This review systematically summarizes the latest advancements, covering major immobilization techniques and the intrinsic mechanisms underlying microalgae-bacteria interactions and electron transport. Additionally, it explores enhancement strategies aimed at balancing microbial light energy allocation, optimizing nutrient supply, and constructing complementary ecological niches. The advantages and application prospects of MABI systems are highlighted. The review contributes to structuring the knowledge framework of MABI research and identifies critical gaps for future investigation.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"431 \",\"pages\":\"Article 132609\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425005759\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005759","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
New insights into microalgal-bacterial immobilization systems for wastewater treatment: mechanisms, enhancement strategies, and application prospects
The wastewater treatment based on the symbiosis of microalgae and bacteria has attracted increasing attention for its excellent pollutant removal efficiency, energy savings, and resource recovery. Among them, the microalgae-bacteria immobilization (MABI) system stands out by enhancing the electron transfer efficiency through carrier domain confinement, thereby overcoming bottlenecks of low light energy utilization and challenging biomass recycling. MABI is considered a key breakthrough for advancing engineering applications. However, a comprehensive exploration of MABI systems remains lacking. This review systematically summarizes the latest advancements, covering major immobilization techniques and the intrinsic mechanisms underlying microalgae-bacteria interactions and electron transport. Additionally, it explores enhancement strategies aimed at balancing microbial light energy allocation, optimizing nutrient supply, and constructing complementary ecological niches. The advantages and application prospects of MABI systems are highlighted. The review contributes to structuring the knowledge framework of MABI research and identifies critical gaps for future investigation.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.