{"title":"激酶结构域多样化驱动BRI1和非BRI1 RLKs在油菜素内酯信号传导中的特异性","authors":"Khawar Ali , Wenjuan Li , Guang Wu","doi":"10.1016/j.plantsci.2025.112531","DOIUrl":null,"url":null,"abstract":"<div><div>Receptor-like kinases (RLKs) are one of the largest families of Eukaryotic protein kinases (EPKs) that evolved through repeated duplication and diversification events in plants. RLKs regulate diverse roles of plant growth and development. Brassinosteroid Insensitive 1 (BRI1) and its family members BRI1-Like 1 (BRL1/3), BRL2, Excess Microsporocytes 1 (EMS1), and Nematode-Induced LRR-RLK 1 (NILR1) that belong to the LRR-RLK family of RLKs, control distinct biological functions through a conserved brassinosteroid (BR) signaling pathway. We previously demonstrated that the kinase specificity between BRI1 and GASSHO1 (GSO1) is allosterically regulated by merely two subdomains, raising a question of how different RLKs control distinct biological functions through their conserved kinase domain (KD). Here, we engineered chimeric receptors by fusing the extracellular domain (ECD) of BRI1 with KD of the BRI1 family and with non-BRI1 family RLKs, including BAK1-Interacting Receptor-like Kinase 1 (BIR1), BIR2, TOAD2 (RPK2), Barely Any Meristem (BAM1), CLAVATA 1 (CLV1), SOBIR1, Elongation Factor (EF-Tu) Receptor (EFR), Glycan Perception 4 (IGP4), and Strubbelig-Receptor Family 8 (SRF8), and confirmed that only the BRI1 family achieved BR signal output but not the others. We then replaced the S1 and S2 subdomains of the chimeric receptors with the corresponding S1 and S2 subdomains of the BRI1 kinase and found that except GSO1<sup><em>BRI1-S1S2</em></sup>, no other chimeric receptor could induce BR signaling in <em>bri1–301</em> mutants. However, chimeric receptors <em>RPK2</em><sup><em>BRI1-S1(E)S2</em></sup>, <em>EFR</em><sup><em>BRI1-S1(E)S2</em></sup>, <em>IGP4</em><sup><em>BRI1-S1(E)S2</em></sup>, <em>BAM1</em><sup><em>BRI1-S1(E)S2</em></sup>, and <em>SRF8</em><sup><em>BRI1-S1(E)S2</em></sup> with an extended S1 subdomain S1(E) of BRI1 not only rescued <em>bri1–301</em>, but also achieved molecular phenotypes. In conclusion, this study provides evidence that signaling specificity of the RLKs has evolved through evolution of the S1 and S2 subdomains.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"357 ","pages":"Article 112531"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinase domain diversification drives specificity in BRI1 and non-BRI1 RLKs in brassinosteroid signaling\",\"authors\":\"Khawar Ali , Wenjuan Li , Guang Wu\",\"doi\":\"10.1016/j.plantsci.2025.112531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Receptor-like kinases (RLKs) are one of the largest families of Eukaryotic protein kinases (EPKs) that evolved through repeated duplication and diversification events in plants. RLKs regulate diverse roles of plant growth and development. Brassinosteroid Insensitive 1 (BRI1) and its family members BRI1-Like 1 (BRL1/3), BRL2, Excess Microsporocytes 1 (EMS1), and Nematode-Induced LRR-RLK 1 (NILR1) that belong to the LRR-RLK family of RLKs, control distinct biological functions through a conserved brassinosteroid (BR) signaling pathway. We previously demonstrated that the kinase specificity between BRI1 and GASSHO1 (GSO1) is allosterically regulated by merely two subdomains, raising a question of how different RLKs control distinct biological functions through their conserved kinase domain (KD). Here, we engineered chimeric receptors by fusing the extracellular domain (ECD) of BRI1 with KD of the BRI1 family and with non-BRI1 family RLKs, including BAK1-Interacting Receptor-like Kinase 1 (BIR1), BIR2, TOAD2 (RPK2), Barely Any Meristem (BAM1), CLAVATA 1 (CLV1), SOBIR1, Elongation Factor (EF-Tu) Receptor (EFR), Glycan Perception 4 (IGP4), and Strubbelig-Receptor Family 8 (SRF8), and confirmed that only the BRI1 family achieved BR signal output but not the others. We then replaced the S1 and S2 subdomains of the chimeric receptors with the corresponding S1 and S2 subdomains of the BRI1 kinase and found that except GSO1<sup><em>BRI1-S1S2</em></sup>, no other chimeric receptor could induce BR signaling in <em>bri1–301</em> mutants. However, chimeric receptors <em>RPK2</em><sup><em>BRI1-S1(E)S2</em></sup>, <em>EFR</em><sup><em>BRI1-S1(E)S2</em></sup>, <em>IGP4</em><sup><em>BRI1-S1(E)S2</em></sup>, <em>BAM1</em><sup><em>BRI1-S1(E)S2</em></sup>, and <em>SRF8</em><sup><em>BRI1-S1(E)S2</em></sup> with an extended S1 subdomain S1(E) of BRI1 not only rescued <em>bri1–301</em>, but also achieved molecular phenotypes. In conclusion, this study provides evidence that signaling specificity of the RLKs has evolved through evolution of the S1 and S2 subdomains.</div></div>\",\"PeriodicalId\":20273,\"journal\":{\"name\":\"Plant Science\",\"volume\":\"357 \",\"pages\":\"Article 112531\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168945225001499\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225001499","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Kinase domain diversification drives specificity in BRI1 and non-BRI1 RLKs in brassinosteroid signaling
Receptor-like kinases (RLKs) are one of the largest families of Eukaryotic protein kinases (EPKs) that evolved through repeated duplication and diversification events in plants. RLKs regulate diverse roles of plant growth and development. Brassinosteroid Insensitive 1 (BRI1) and its family members BRI1-Like 1 (BRL1/3), BRL2, Excess Microsporocytes 1 (EMS1), and Nematode-Induced LRR-RLK 1 (NILR1) that belong to the LRR-RLK family of RLKs, control distinct biological functions through a conserved brassinosteroid (BR) signaling pathway. We previously demonstrated that the kinase specificity between BRI1 and GASSHO1 (GSO1) is allosterically regulated by merely two subdomains, raising a question of how different RLKs control distinct biological functions through their conserved kinase domain (KD). Here, we engineered chimeric receptors by fusing the extracellular domain (ECD) of BRI1 with KD of the BRI1 family and with non-BRI1 family RLKs, including BAK1-Interacting Receptor-like Kinase 1 (BIR1), BIR2, TOAD2 (RPK2), Barely Any Meristem (BAM1), CLAVATA 1 (CLV1), SOBIR1, Elongation Factor (EF-Tu) Receptor (EFR), Glycan Perception 4 (IGP4), and Strubbelig-Receptor Family 8 (SRF8), and confirmed that only the BRI1 family achieved BR signal output but not the others. We then replaced the S1 and S2 subdomains of the chimeric receptors with the corresponding S1 and S2 subdomains of the BRI1 kinase and found that except GSO1BRI1-S1S2, no other chimeric receptor could induce BR signaling in bri1–301 mutants. However, chimeric receptors RPK2BRI1-S1(E)S2, EFRBRI1-S1(E)S2, IGP4BRI1-S1(E)S2, BAM1BRI1-S1(E)S2, and SRF8BRI1-S1(E)S2 with an extended S1 subdomain S1(E) of BRI1 not only rescued bri1–301, but also achieved molecular phenotypes. In conclusion, this study provides evidence that signaling specificity of the RLKs has evolved through evolution of the S1 and S2 subdomains.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.