芯片阵列热界面材料-微通道-纳米流体热管理系统双目标优化设计

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Yingzong Liang , Zejian Lin , Xianglong Luo , Jianyong Chen , Zhi Yang , Rongjun Wu , Ying Chen
{"title":"芯片阵列热界面材料-微通道-纳米流体热管理系统双目标优化设计","authors":"Yingzong Liang ,&nbsp;Zejian Lin ,&nbsp;Xianglong Luo ,&nbsp;Jianyong Chen ,&nbsp;Zhi Yang ,&nbsp;Rongjun Wu ,&nbsp;Ying Chen","doi":"10.1016/j.applthermaleng.2025.126727","DOIUrl":null,"url":null,"abstract":"<div><div>As the power consumption of Active Antenna Unit (AAU) increases, effective thermal management is essential to ensuring stable equipment operation. Among various solutions, microchannel liquid cooling using nanofluid offers notable potential, yet system-level studies on its integration remain limited. This study develops a microchip array thermal management system based on thermal interface material, microchannel, and nanofluid. A semi-empirical steady-state heat transfer model is combined with an economic model to establish a bi-objective optimization framework. This framework enables a trade-off optimization that balances cooling performance and economic efficiency. Sensitivity analysis is conducted to evaluate the influence of key design parameters, and case studies under different operating scenarios are used to validate system’s reliability. Results indicate that the trade-off design achieves a weighted average chip junction temperature of 53.3 °C with a total annualized cost of $45.7. The study concludes that optimizing the structural design and cost of the air-cooled heat sink, along with reducing pump and fan power, is key to achieving efficient and cost-effective thermal management.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"274 ","pages":"Article 126727"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-objective optimization of thermal interface material-microchannel-nanofluid-based thermal management system design for microchip array\",\"authors\":\"Yingzong Liang ,&nbsp;Zejian Lin ,&nbsp;Xianglong Luo ,&nbsp;Jianyong Chen ,&nbsp;Zhi Yang ,&nbsp;Rongjun Wu ,&nbsp;Ying Chen\",\"doi\":\"10.1016/j.applthermaleng.2025.126727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As the power consumption of Active Antenna Unit (AAU) increases, effective thermal management is essential to ensuring stable equipment operation. Among various solutions, microchannel liquid cooling using nanofluid offers notable potential, yet system-level studies on its integration remain limited. This study develops a microchip array thermal management system based on thermal interface material, microchannel, and nanofluid. A semi-empirical steady-state heat transfer model is combined with an economic model to establish a bi-objective optimization framework. This framework enables a trade-off optimization that balances cooling performance and economic efficiency. Sensitivity analysis is conducted to evaluate the influence of key design parameters, and case studies under different operating scenarios are used to validate system’s reliability. Results indicate that the trade-off design achieves a weighted average chip junction temperature of 53.3 °C with a total annualized cost of $45.7. The study concludes that optimizing the structural design and cost of the air-cooled heat sink, along with reducing pump and fan power, is key to achieving efficient and cost-effective thermal management.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"274 \",\"pages\":\"Article 126727\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431125013195\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125013195","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着有源天线单元(AAU)功耗的增加,有效的热管理对于保证设备的稳定运行至关重要。在各种解决方案中,利用纳米流体的微通道液体冷却具有显著的潜力,但对其集成的系统级研究仍然有限。本研究开发了一种基于热界面材料、微通道和纳米流体的微芯片阵列热管理系统。将半经验稳态传热模型与经济模型相结合,建立了双目标优化框架。该框架实现了平衡冷却性能和经济效率的权衡优化。通过灵敏度分析评估关键设计参数的影响,并通过不同运行场景下的案例分析验证系统的可靠性。结果表明,权衡设计实现了53.3°C的加权平均芯片结温,年化总成本为45.7美元。该研究得出结论,优化风冷散热器的结构设计和成本,以及减少泵和风扇的功率,是实现高效和经济的热管理的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bi-objective optimization of thermal interface material-microchannel-nanofluid-based thermal management system design for microchip array

Bi-objective optimization of thermal interface material-microchannel-nanofluid-based thermal management system design for microchip array
As the power consumption of Active Antenna Unit (AAU) increases, effective thermal management is essential to ensuring stable equipment operation. Among various solutions, microchannel liquid cooling using nanofluid offers notable potential, yet system-level studies on its integration remain limited. This study develops a microchip array thermal management system based on thermal interface material, microchannel, and nanofluid. A semi-empirical steady-state heat transfer model is combined with an economic model to establish a bi-objective optimization framework. This framework enables a trade-off optimization that balances cooling performance and economic efficiency. Sensitivity analysis is conducted to evaluate the influence of key design parameters, and case studies under different operating scenarios are used to validate system’s reliability. Results indicate that the trade-off design achieves a weighted average chip junction temperature of 53.3 °C with a total annualized cost of $45.7. The study concludes that optimizing the structural design and cost of the air-cooled heat sink, along with reducing pump and fan power, is key to achieving efficient and cost-effective thermal management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信