基于贝叶斯推理的压水堆乏燃料部分缺陷验证的不确定性分析

IF 2.6 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Hojik Kim , Hyung-Joo Choi , Woojin Kim , Seungmin Lee , Chul Hee Min , Sung-Woo Kwak
{"title":"基于贝叶斯推理的压水堆乏燃料部分缺陷验证的不确定性分析","authors":"Hojik Kim ,&nbsp;Hyung-Joo Choi ,&nbsp;Woojin Kim ,&nbsp;Seungmin Lee ,&nbsp;Chul Hee Min ,&nbsp;Sung-Woo Kwak","doi":"10.1016/j.net.2025.103679","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring the integrity of spent nuclear fuel (SNF) is essential for nuclear non-proliferation efforts. While detecting gross defects is relatively straightforward, identifying partial defects remain challenging. This study proposes a Bayesian inference method implemented by our newly developed Yonsei Single-photon Emission Computed Tomography version 2 (YSECT.v.2) for verifying partial defects in SNF. Unlike traditional SNF defect detection algorithms that estimate specific values, the proposed method estimates distributions, thus providing belief in the estimates. Using the Monte Carlo (MC) method, we simulated partial defect scenarios and evaluated the proposed method's effectiveness against maximum-likelihood expectation-maximization (MLEM) across various defect patterns, ratios, and heterogeneous burnup conditions. The results indicate that the proposed technique reliably detects nuclear material diversion with high confidence.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 10","pages":"Article 103679"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty analysis based on Bayesian inference for partial defect verification of PWR spent nuclear fuel\",\"authors\":\"Hojik Kim ,&nbsp;Hyung-Joo Choi ,&nbsp;Woojin Kim ,&nbsp;Seungmin Lee ,&nbsp;Chul Hee Min ,&nbsp;Sung-Woo Kwak\",\"doi\":\"10.1016/j.net.2025.103679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ensuring the integrity of spent nuclear fuel (SNF) is essential for nuclear non-proliferation efforts. While detecting gross defects is relatively straightforward, identifying partial defects remain challenging. This study proposes a Bayesian inference method implemented by our newly developed Yonsei Single-photon Emission Computed Tomography version 2 (YSECT.v.2) for verifying partial defects in SNF. Unlike traditional SNF defect detection algorithms that estimate specific values, the proposed method estimates distributions, thus providing belief in the estimates. Using the Monte Carlo (MC) method, we simulated partial defect scenarios and evaluated the proposed method's effectiveness against maximum-likelihood expectation-maximization (MLEM) across various defect patterns, ratios, and heterogeneous burnup conditions. The results indicate that the proposed technique reliably detects nuclear material diversion with high confidence.</div></div>\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":\"57 10\",\"pages\":\"Article 103679\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1738573325002475\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573325002475","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

确保乏核燃料的完整性对核不扩散工作至关重要。虽然检测总体缺陷相对简单,但识别部分缺陷仍然具有挑战性。本研究提出了一种贝叶斯推理方法,该方法由我们新开发的延世大学单光子发射计算机断层扫描版本2 (YSECT.v.2)实现,用于验证SNF中的部分缺陷。与传统的SNF缺陷检测算法估计特定值不同,该方法估计分布,从而提供估计的可信度。使用蒙特卡罗(MC)方法,我们模拟了部分缺陷场景,并评估了所提出的方法在各种缺陷模式、比率和异质燃耗条件下对最大似然期望最大化(MLEM)的有效性。结果表明,该方法能够可靠、高置信度地检测核材料转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty analysis based on Bayesian inference for partial defect verification of PWR spent nuclear fuel
Ensuring the integrity of spent nuclear fuel (SNF) is essential for nuclear non-proliferation efforts. While detecting gross defects is relatively straightforward, identifying partial defects remain challenging. This study proposes a Bayesian inference method implemented by our newly developed Yonsei Single-photon Emission Computed Tomography version 2 (YSECT.v.2) for verifying partial defects in SNF. Unlike traditional SNF defect detection algorithms that estimate specific values, the proposed method estimates distributions, thus providing belief in the estimates. Using the Monte Carlo (MC) method, we simulated partial defect scenarios and evaluated the proposed method's effectiveness against maximum-likelihood expectation-maximization (MLEM) across various defect patterns, ratios, and heterogeneous burnup conditions. The results indicate that the proposed technique reliably detects nuclear material diversion with high confidence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Engineering and Technology
Nuclear Engineering and Technology 工程技术-核科学技术
CiteScore
4.80
自引率
7.40%
发文量
431
审稿时长
3.5 months
期刊介绍: Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters. NET covers all fields for peaceful utilization of nuclear energy and radiation as follows: 1) Reactor Physics 2) Thermal Hydraulics 3) Nuclear Safety 4) Nuclear I&C 5) Nuclear Physics, Fusion, and Laser Technology 6) Nuclear Fuel Cycle and Radioactive Waste Management 7) Nuclear Fuel and Reactor Materials 8) Radiation Application 9) Radiation Protection 10) Nuclear Structural Analysis and Plant Management & Maintenance 11) Nuclear Policy, Economics, and Human Resource Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信