Regina Maria Chiechio , Antonino Scandurra , Riccardo Reitano , Paolo Musumeci , Maria Grazia Grimaldi , Annalinda Contino , Giuseppe Maccarrone , Valerie Marchi , Ludovica Maugeri , Salvatore Petralia , Francesco Ruffino
{"title":"用于无pcr超灵敏DNA检测的量子荧光金纳米团簇","authors":"Regina Maria Chiechio , Antonino Scandurra , Riccardo Reitano , Paolo Musumeci , Maria Grazia Grimaldi , Annalinda Contino , Giuseppe Maccarrone , Valerie Marchi , Ludovica Maugeri , Salvatore Petralia , Francesco Ruffino","doi":"10.1016/j.apsadv.2025.100762","DOIUrl":null,"url":null,"abstract":"<div><div>Gold nanoclusters (AuNCs) have emerged as promising tools for biomedical and environmental applications due to their photoluminescence, biocompatibility, and molecule-like electronic structure. This study presents a novel AuNC-based sensor platform, characterized by eco-friendly synthesis, label-free functionality, and ultrasensitivity for biomolecular detection. AuNCs were synthesized using a green chemistry approach without toxic solvents, yielding strong optical properties with an absorbance peak at 400 nm and emission at 600 nm. Functionalization with thiolated single-stranded DNA (ssDNA) enabled fluorescence-based detection of specific DNA sequences with a limit of detection in the attomolar range. The sensor demonstrated high specificity, distinguishing target DNA from non-specific sequences in both buffer solutions and complex biological matrices, including blood. The modular design allows adaptation to detect various biomolecules by incorporating specific aptamers. This versatile, cost-effective platform combines eco-friendly synthesis, high sensitivity, and specificity, offering significant potential for advanced diagnostics and environmental monitoring in real-world settings.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"27 ","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum fluorescent gold nanoclusters for PCR-free ultrasensitive DNA detection\",\"authors\":\"Regina Maria Chiechio , Antonino Scandurra , Riccardo Reitano , Paolo Musumeci , Maria Grazia Grimaldi , Annalinda Contino , Giuseppe Maccarrone , Valerie Marchi , Ludovica Maugeri , Salvatore Petralia , Francesco Ruffino\",\"doi\":\"10.1016/j.apsadv.2025.100762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gold nanoclusters (AuNCs) have emerged as promising tools for biomedical and environmental applications due to their photoluminescence, biocompatibility, and molecule-like electronic structure. This study presents a novel AuNC-based sensor platform, characterized by eco-friendly synthesis, label-free functionality, and ultrasensitivity for biomolecular detection. AuNCs were synthesized using a green chemistry approach without toxic solvents, yielding strong optical properties with an absorbance peak at 400 nm and emission at 600 nm. Functionalization with thiolated single-stranded DNA (ssDNA) enabled fluorescence-based detection of specific DNA sequences with a limit of detection in the attomolar range. The sensor demonstrated high specificity, distinguishing target DNA from non-specific sequences in both buffer solutions and complex biological matrices, including blood. The modular design allows adaptation to detect various biomolecules by incorporating specific aptamers. This versatile, cost-effective platform combines eco-friendly synthesis, high sensitivity, and specificity, offering significant potential for advanced diagnostics and environmental monitoring in real-world settings.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"27 \",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523925000704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Quantum fluorescent gold nanoclusters for PCR-free ultrasensitive DNA detection
Gold nanoclusters (AuNCs) have emerged as promising tools for biomedical and environmental applications due to their photoluminescence, biocompatibility, and molecule-like electronic structure. This study presents a novel AuNC-based sensor platform, characterized by eco-friendly synthesis, label-free functionality, and ultrasensitivity for biomolecular detection. AuNCs were synthesized using a green chemistry approach without toxic solvents, yielding strong optical properties with an absorbance peak at 400 nm and emission at 600 nm. Functionalization with thiolated single-stranded DNA (ssDNA) enabled fluorescence-based detection of specific DNA sequences with a limit of detection in the attomolar range. The sensor demonstrated high specificity, distinguishing target DNA from non-specific sequences in both buffer solutions and complex biological matrices, including blood. The modular design allows adaptation to detect various biomolecules by incorporating specific aptamers. This versatile, cost-effective platform combines eco-friendly synthesis, high sensitivity, and specificity, offering significant potential for advanced diagnostics and environmental monitoring in real-world settings.