基于激光雷达的沟渠和自然溪流地图的不确定性量化

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Florian Westphal , William Lidberg , Mariana Dos Santos Toledo Busarello , Anneli M. Ågren
{"title":"基于激光雷达的沟渠和自然溪流地图的不确定性量化","authors":"Florian Westphal ,&nbsp;William Lidberg ,&nbsp;Mariana Dos Santos Toledo Busarello ,&nbsp;Anneli M. Ågren","doi":"10.1016/j.envsoft.2025.106488","DOIUrl":null,"url":null,"abstract":"<div><div>This article compares novel and existing uncertainty quantification approaches for semantic segmentation used in remote sensing applications. We compare the probability estimates produced by a neural network with Monte Carlo dropout-based approaches, including predictive entropy and mutual information, and conformal prediction-based approaches, including feature conformal prediction (FCP) and a novel approach based on conformal regression. The chosen task focuses on identifying ditches and natural streams based on LiDAR derived digital elevation models. We found that FCP’s uncertainty estimates aligned best with the neural network’s prediction performance, leading to the lowest Area Under the Sparsification Error curve of 0.09. For finding misclassified instances, the network probability was most suitable, requiring a correction of only 3% of the test instances to achieve a Matthews Correlation Coefficient (MCC) of 0.95. Conformal regression produced the best confident maps, which, at 90% confidence, covered 60% of the area and achieved an MCC of 0.82.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"191 ","pages":"Article 106488"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty quantification for LiDAR-based maps of ditches and natural streams\",\"authors\":\"Florian Westphal ,&nbsp;William Lidberg ,&nbsp;Mariana Dos Santos Toledo Busarello ,&nbsp;Anneli M. Ågren\",\"doi\":\"10.1016/j.envsoft.2025.106488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article compares novel and existing uncertainty quantification approaches for semantic segmentation used in remote sensing applications. We compare the probability estimates produced by a neural network with Monte Carlo dropout-based approaches, including predictive entropy and mutual information, and conformal prediction-based approaches, including feature conformal prediction (FCP) and a novel approach based on conformal regression. The chosen task focuses on identifying ditches and natural streams based on LiDAR derived digital elevation models. We found that FCP’s uncertainty estimates aligned best with the neural network’s prediction performance, leading to the lowest Area Under the Sparsification Error curve of 0.09. For finding misclassified instances, the network probability was most suitable, requiring a correction of only 3% of the test instances to achieve a Matthews Correlation Coefficient (MCC) of 0.95. Conformal regression produced the best confident maps, which, at 90% confidence, covered 60% of the area and achieved an MCC of 0.82.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"191 \",\"pages\":\"Article 106488\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225001720\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001720","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文比较了遥感应用中新的和现有的语义分割不确定性量化方法。我们比较了由神经网络产生的概率估计与基于蒙特卡罗辍学的方法,包括预测熵和互信息,以及基于保形预测的方法,包括特征保形预测(FCP)和基于保形回归的新方法。所选任务的重点是基于激光雷达衍生的数字高程模型识别沟渠和自然溪流。我们发现FCP的不确定性估计与神经网络的预测性能最一致,导致在稀疏化误差曲线下的最小面积为0.09。对于发现错误分类的实例,网络概率是最合适的,只需要对3%的测试实例进行校正,就可以达到0.95的Matthews相关系数(MCC)。保形回归生成了最可靠的地图,在90%的可信度下,覆盖了60%的区域,MCC达到0.82。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty quantification for LiDAR-based maps of ditches and natural streams
This article compares novel and existing uncertainty quantification approaches for semantic segmentation used in remote sensing applications. We compare the probability estimates produced by a neural network with Monte Carlo dropout-based approaches, including predictive entropy and mutual information, and conformal prediction-based approaches, including feature conformal prediction (FCP) and a novel approach based on conformal regression. The chosen task focuses on identifying ditches and natural streams based on LiDAR derived digital elevation models. We found that FCP’s uncertainty estimates aligned best with the neural network’s prediction performance, leading to the lowest Area Under the Sparsification Error curve of 0.09. For finding misclassified instances, the network probability was most suitable, requiring a correction of only 3% of the test instances to achieve a Matthews Correlation Coefficient (MCC) of 0.95. Conformal regression produced the best confident maps, which, at 90% confidence, covered 60% of the area and achieved an MCC of 0.82.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信