基于核自适应滤波器的自适应水声OFDMA信道预测

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Lei Liu , Chao Ma , Yong Duan , Xinyu Liu , Wanyuan Zhang
{"title":"基于核自适应滤波器的自适应水声OFDMA信道预测","authors":"Lei Liu ,&nbsp;Chao Ma ,&nbsp;Yong Duan ,&nbsp;Xinyu Liu ,&nbsp;Wanyuan Zhang","doi":"10.1016/j.apor.2025.104586","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a dynamic adaptive forgetting sparse kernel recursive least squares (DAFS-KRLS) model for predicting time-varying underwater acoustic (UWA) channels and applies it to an adaptive orthogonal frequency-division multiple access (OFDMA) system. By introducing an offline-online joint training mechanism, the DAFS-KRLS model adapts to the time-varying nature of UWA channels, thereby improving the real-time performance and stability of channel prediction. Simulation and sea trial data are used to validate the DAFS-KRLS model, with comparisons to traditional recursive least squares (RLS), approximate linear dependency based KRLS (ALD-KRLS), and convolutional neural networks (CNN) combined with long short-term memory (LSTM) models (CNN-LSTM). Experimental results show that the DAFS-KRLS model achieves robust performance even with a smaller data volume, outperforming other models in accuracy and stability.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"158 ","pages":"Article 104586"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel adaptive filter-based channel prediction for adaptive underwater acoustic OFDMA system\",\"authors\":\"Lei Liu ,&nbsp;Chao Ma ,&nbsp;Yong Duan ,&nbsp;Xinyu Liu ,&nbsp;Wanyuan Zhang\",\"doi\":\"10.1016/j.apor.2025.104586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a dynamic adaptive forgetting sparse kernel recursive least squares (DAFS-KRLS) model for predicting time-varying underwater acoustic (UWA) channels and applies it to an adaptive orthogonal frequency-division multiple access (OFDMA) system. By introducing an offline-online joint training mechanism, the DAFS-KRLS model adapts to the time-varying nature of UWA channels, thereby improving the real-time performance and stability of channel prediction. Simulation and sea trial data are used to validate the DAFS-KRLS model, with comparisons to traditional recursive least squares (RLS), approximate linear dependency based KRLS (ALD-KRLS), and convolutional neural networks (CNN) combined with long short-term memory (LSTM) models (CNN-LSTM). Experimental results show that the DAFS-KRLS model achieves robust performance even with a smaller data volume, outperforming other models in accuracy and stability.</div></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":\"158 \",\"pages\":\"Article 104586\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141118725001737\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118725001737","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于时变水声信道预测的动态自适应遗忘稀疏核递归最小二乘(DAFS-KRLS)模型,并将其应用于自适应正交频分多址(OFDMA)系统。DAFS-KRLS模型通过引入离线-在线联合训练机制,适应UWA信道的时变特性,提高了信道预测的实时性和稳定性。利用仿真和海试数据验证了DAFS-KRLS模型,并与传统的递归最小二乘(RLS)、基于近似线性依赖的KRLS (ALD-KRLS)和卷积神经网络(CNN)结合长短期记忆(LSTM)模型(CNN-LSTM)进行了比较。实验结果表明,DAFS-KRLS模型即使在较小的数据量下也具有鲁棒性,在精度和稳定性方面优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel adaptive filter-based channel prediction for adaptive underwater acoustic OFDMA system
This paper presents a dynamic adaptive forgetting sparse kernel recursive least squares (DAFS-KRLS) model for predicting time-varying underwater acoustic (UWA) channels and applies it to an adaptive orthogonal frequency-division multiple access (OFDMA) system. By introducing an offline-online joint training mechanism, the DAFS-KRLS model adapts to the time-varying nature of UWA channels, thereby improving the real-time performance and stability of channel prediction. Simulation and sea trial data are used to validate the DAFS-KRLS model, with comparisons to traditional recursive least squares (RLS), approximate linear dependency based KRLS (ALD-KRLS), and convolutional neural networks (CNN) combined with long short-term memory (LSTM) models (CNN-LSTM). Experimental results show that the DAFS-KRLS model achieves robust performance even with a smaller data volume, outperforming other models in accuracy and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信