Mahmoud S. Elkotamy , Islam A. Elkelesh , Simone Giovannuzzi , Rania S.M. Ismail , Wessam M. El-Refaie , Abdulrahman A. Almehizia , Ahmed M. Naglah , Alessio Nocentini , Claudiu T. Supuran , Mohamed Fares , Hazem A. Ghabbour , Rofaida Salem , Wagdy M. Eldehna , Hatem A. Abdel-Aziz
{"title":"合理设计Pyrazolo[1,5- A]嘧啶作为CA IX/XII和CDK6的双重抑制剂:一种治疗非小细胞肺癌的新方法","authors":"Mahmoud S. Elkotamy , Islam A. Elkelesh , Simone Giovannuzzi , Rania S.M. Ismail , Wessam M. El-Refaie , Abdulrahman A. Almehizia , Ahmed M. Naglah , Alessio Nocentini , Claudiu T. Supuran , Mohamed Fares , Hazem A. Ghabbour , Rofaida Salem , Wagdy M. Eldehna , Hatem A. Abdel-Aziz","doi":"10.1016/j.ejmech.2025.117752","DOIUrl":null,"url":null,"abstract":"<div><div>Developing novel anticancer agents that target critical pathways in non-small cell lung cancer (NSCLC) presents a considerable challenge. This study synthesized 16 pyrazolo[1,5-<em>a</em>]pyrimidine derivatives with zinc-binding groups through molecular hybridization to achieve dual-target inhibition of tumor-associated carbonic anhydrase (CA) isoforms IX/XII and cyclin-dependent kinase 6 (CDK6). <em>In-vitro</em> assays indicated that sulfonamide-bearing compounds displayed enhanced CA inhibition, with compounds <strong>7d</strong>, <strong>11b</strong>, and <strong>11d</strong> presenting K<sub>i</sub> values of 11.2, 18.4, and 19.7 nM for CA IX, while compounds <strong>11a</strong> and <strong>11c</strong> exhibited K<sub>i</sub> values of 14.8 and 8.7 nM for CA XII. Cytotoxicity assays conducted on NSCLC cell lines A549 and NCI–H1734 demonstrated that compounds <strong>7c</strong>, <strong>7d</strong>, <strong>7i</strong>, and <strong>11d</strong> exhibited superior activity relative to <strong>Roscovitine</strong> in both cell lines. While these compounds demonstrated limited inhibition of cyclin-dependent kinase 4 (CDK4), <strong>7d</strong> and <strong>11d</strong> effectively inhibited CDK6, with IC<sub>50</sub> values of 0.054 and 0.069 μM, respectively, which are comparable to <strong>Palbociclib</strong>. Analyses of the cell cycle and apoptosis demonstrated a strong G1 arrest and a notable induction of apoptosis. Molecular docking confirmed essential binding interactions with CA IX/XII and CDK6, while <em>in-silico</em> ADMET predictions suggested favorable pharmacokinetics, despite potential toxicity concerns. Compounds <strong>7d</strong> and <strong>11d</strong> represent potential dual-target inhibitors for the treatment of NSCLC.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"293 ","pages":"Article 117752"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rationally designed Pyrazolo[1,5-a]pyrimidines as dual inhibitors of CA IX/XII and CDK6: A novel approach for NSCLC treatment\",\"authors\":\"Mahmoud S. Elkotamy , Islam A. Elkelesh , Simone Giovannuzzi , Rania S.M. Ismail , Wessam M. El-Refaie , Abdulrahman A. Almehizia , Ahmed M. Naglah , Alessio Nocentini , Claudiu T. Supuran , Mohamed Fares , Hazem A. Ghabbour , Rofaida Salem , Wagdy M. Eldehna , Hatem A. Abdel-Aziz\",\"doi\":\"10.1016/j.ejmech.2025.117752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing novel anticancer agents that target critical pathways in non-small cell lung cancer (NSCLC) presents a considerable challenge. This study synthesized 16 pyrazolo[1,5-<em>a</em>]pyrimidine derivatives with zinc-binding groups through molecular hybridization to achieve dual-target inhibition of tumor-associated carbonic anhydrase (CA) isoforms IX/XII and cyclin-dependent kinase 6 (CDK6). <em>In-vitro</em> assays indicated that sulfonamide-bearing compounds displayed enhanced CA inhibition, with compounds <strong>7d</strong>, <strong>11b</strong>, and <strong>11d</strong> presenting K<sub>i</sub> values of 11.2, 18.4, and 19.7 nM for CA IX, while compounds <strong>11a</strong> and <strong>11c</strong> exhibited K<sub>i</sub> values of 14.8 and 8.7 nM for CA XII. Cytotoxicity assays conducted on NSCLC cell lines A549 and NCI–H1734 demonstrated that compounds <strong>7c</strong>, <strong>7d</strong>, <strong>7i</strong>, and <strong>11d</strong> exhibited superior activity relative to <strong>Roscovitine</strong> in both cell lines. While these compounds demonstrated limited inhibition of cyclin-dependent kinase 4 (CDK4), <strong>7d</strong> and <strong>11d</strong> effectively inhibited CDK6, with IC<sub>50</sub> values of 0.054 and 0.069 μM, respectively, which are comparable to <strong>Palbociclib</strong>. Analyses of the cell cycle and apoptosis demonstrated a strong G1 arrest and a notable induction of apoptosis. Molecular docking confirmed essential binding interactions with CA IX/XII and CDK6, while <em>in-silico</em> ADMET predictions suggested favorable pharmacokinetics, despite potential toxicity concerns. Compounds <strong>7d</strong> and <strong>11d</strong> represent potential dual-target inhibitors for the treatment of NSCLC.</div></div>\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":\"293 \",\"pages\":\"Article 117752\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0223523425005173\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523425005173","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Rationally designed Pyrazolo[1,5-a]pyrimidines as dual inhibitors of CA IX/XII and CDK6: A novel approach for NSCLC treatment
Developing novel anticancer agents that target critical pathways in non-small cell lung cancer (NSCLC) presents a considerable challenge. This study synthesized 16 pyrazolo[1,5-a]pyrimidine derivatives with zinc-binding groups through molecular hybridization to achieve dual-target inhibition of tumor-associated carbonic anhydrase (CA) isoforms IX/XII and cyclin-dependent kinase 6 (CDK6). In-vitro assays indicated that sulfonamide-bearing compounds displayed enhanced CA inhibition, with compounds 7d, 11b, and 11d presenting Ki values of 11.2, 18.4, and 19.7 nM for CA IX, while compounds 11a and 11c exhibited Ki values of 14.8 and 8.7 nM for CA XII. Cytotoxicity assays conducted on NSCLC cell lines A549 and NCI–H1734 demonstrated that compounds 7c, 7d, 7i, and 11d exhibited superior activity relative to Roscovitine in both cell lines. While these compounds demonstrated limited inhibition of cyclin-dependent kinase 4 (CDK4), 7d and 11d effectively inhibited CDK6, with IC50 values of 0.054 and 0.069 μM, respectively, which are comparable to Palbociclib. Analyses of the cell cycle and apoptosis demonstrated a strong G1 arrest and a notable induction of apoptosis. Molecular docking confirmed essential binding interactions with CA IX/XII and CDK6, while in-silico ADMET predictions suggested favorable pharmacokinetics, despite potential toxicity concerns. Compounds 7d and 11d represent potential dual-target inhibitors for the treatment of NSCLC.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.