Bayu I.Z. Ahmad, Kiser Z. Colley, Andrew J. Musser, Phillip J. Milner
{"title":"一种完全光驱动的方法,从排放流中分离二氧化碳","authors":"Bayu I.Z. Ahmad, Kiser Z. Colley, Andrew J. Musser, Phillip J. Milner","doi":"10.1016/j.chempr.2025.102583","DOIUrl":null,"url":null,"abstract":"Carbon capture from industrial point sources is an essential component of the global effort to mitigate climate risks. However, traditional approaches require significant energy input—often provided, counterproductively, by fossil fuel combustion. Using sunlight directly as the energy source would significantly improve the energy efficiency of carbon capture processes. Herein, we report the first fully visible-light-driven CO<sub>2</sub> separation system, in which carbon capture is achieved via the photoenolization/addition reaction of inexpensive 2-methylbenzophenone with CO<sub>2</sub>, and CO<sub>2</sub> release is realized through an intramolecular photodecarboxylation reaction. This system operates isothermally, works with natural sunlight, and facilitates CO<sub>2</sub> removal from natural gas flue emissions, providing a blueprint for other non-thermal chemical separations.","PeriodicalId":268,"journal":{"name":"Chem","volume":"12 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fully light-driven approach to separate carbon dioxide from emission streams\",\"authors\":\"Bayu I.Z. Ahmad, Kiser Z. Colley, Andrew J. Musser, Phillip J. Milner\",\"doi\":\"10.1016/j.chempr.2025.102583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon capture from industrial point sources is an essential component of the global effort to mitigate climate risks. However, traditional approaches require significant energy input—often provided, counterproductively, by fossil fuel combustion. Using sunlight directly as the energy source would significantly improve the energy efficiency of carbon capture processes. Herein, we report the first fully visible-light-driven CO<sub>2</sub> separation system, in which carbon capture is achieved via the photoenolization/addition reaction of inexpensive 2-methylbenzophenone with CO<sub>2</sub>, and CO<sub>2</sub> release is realized through an intramolecular photodecarboxylation reaction. This system operates isothermally, works with natural sunlight, and facilitates CO<sub>2</sub> removal from natural gas flue emissions, providing a blueprint for other non-thermal chemical separations.\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2025.102583\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102583","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A fully light-driven approach to separate carbon dioxide from emission streams
Carbon capture from industrial point sources is an essential component of the global effort to mitigate climate risks. However, traditional approaches require significant energy input—often provided, counterproductively, by fossil fuel combustion. Using sunlight directly as the energy source would significantly improve the energy efficiency of carbon capture processes. Herein, we report the first fully visible-light-driven CO2 separation system, in which carbon capture is achieved via the photoenolization/addition reaction of inexpensive 2-methylbenzophenone with CO2, and CO2 release is realized through an intramolecular photodecarboxylation reaction. This system operates isothermally, works with natural sunlight, and facilitates CO2 removal from natural gas flue emissions, providing a blueprint for other non-thermal chemical separations.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.