Chen Bai, Yuhang Li, Guanyou Xiao, Jiajing Chen, Shendong Tan, Peiran Shi, Tingzheng Hou, Ming Liu, Yan-Bing He, Feiyu Kang
{"title":"了解固态电解质在全电池应用中的电化学窗口","authors":"Chen Bai, Yuhang Li, Guanyou Xiao, Jiajing Chen, Shendong Tan, Peiran Shi, Tingzheng Hou, Ming Liu, Yan-Bing He, Feiyu Kang","doi":"10.1021/acs.chemrev.4c01012","DOIUrl":null,"url":null,"abstract":"In recent years, solid-state Li batteries (SSLBs) have emerged as a promising solution to address the safety concerns associated. However, the limited electrochemical window (ECW) of solid-state electrolytes (SEs) remains a critical constraint full battery application. Understanding the factors that influence the ECW is an essential step toward designing more robust and high-performance electrochemical systems. This review provides a detailed classification of the various “windows” of SEs and a comprehensive understanding of the associated interfacial stability of SEs in full battery application. The paper begins with a historical overview of SE development, followed by a detailed discussion of their structural characteristics. Next, examination of various methodologies used to calculate and measure the ECW is presented, culminating in the proposal of standardized testing procedures. Furthermore, a comprehensive analysis of the numerous parameters that influence the thermodynamic ECW of SEs is provided, along with a synthesis of strategies to address these challenges. At last, this review concludes with an in-depth exploration of the interfacial issues associated with SEs exhibiting narrow ECWs in full SSLBs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"49 1","pages":""},"PeriodicalIF":55.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Electrochemical Window of Solid-State Electrolyte in Full Battery Application\",\"authors\":\"Chen Bai, Yuhang Li, Guanyou Xiao, Jiajing Chen, Shendong Tan, Peiran Shi, Tingzheng Hou, Ming Liu, Yan-Bing He, Feiyu Kang\",\"doi\":\"10.1021/acs.chemrev.4c01012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, solid-state Li batteries (SSLBs) have emerged as a promising solution to address the safety concerns associated. However, the limited electrochemical window (ECW) of solid-state electrolytes (SEs) remains a critical constraint full battery application. Understanding the factors that influence the ECW is an essential step toward designing more robust and high-performance electrochemical systems. This review provides a detailed classification of the various “windows” of SEs and a comprehensive understanding of the associated interfacial stability of SEs in full battery application. The paper begins with a historical overview of SE development, followed by a detailed discussion of their structural characteristics. Next, examination of various methodologies used to calculate and measure the ECW is presented, culminating in the proposal of standardized testing procedures. Furthermore, a comprehensive analysis of the numerous parameters that influence the thermodynamic ECW of SEs is provided, along with a synthesis of strategies to address these challenges. At last, this review concludes with an in-depth exploration of the interfacial issues associated with SEs exhibiting narrow ECWs in full SSLBs.\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":55.8000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrev.4c01012\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c01012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding the Electrochemical Window of Solid-State Electrolyte in Full Battery Application
In recent years, solid-state Li batteries (SSLBs) have emerged as a promising solution to address the safety concerns associated. However, the limited electrochemical window (ECW) of solid-state electrolytes (SEs) remains a critical constraint full battery application. Understanding the factors that influence the ECW is an essential step toward designing more robust and high-performance electrochemical systems. This review provides a detailed classification of the various “windows” of SEs and a comprehensive understanding of the associated interfacial stability of SEs in full battery application. The paper begins with a historical overview of SE development, followed by a detailed discussion of their structural characteristics. Next, examination of various methodologies used to calculate and measure the ECW is presented, culminating in the proposal of standardized testing procedures. Furthermore, a comprehensive analysis of the numerous parameters that influence the thermodynamic ECW of SEs is provided, along with a synthesis of strategies to address these challenges. At last, this review concludes with an in-depth exploration of the interfacial issues associated with SEs exhibiting narrow ECWs in full SSLBs.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.