线性聚合物动力学蒙特卡罗模拟的基准案例和指南

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Tomás Romero Pietrafesa, Alessandro D. Trigilio, Yoshi W. Marien, Pablo Reyes, Mariya Edeleva, Mariano Asteasuain, Paul H. M. Van Steenberge, Dagmar R. D’hooge
{"title":"线性聚合物动力学蒙特卡罗模拟的基准案例和指南","authors":"Tomás Romero Pietrafesa, Alessandro D. Trigilio, Yoshi W. Marien, Pablo Reyes, Mariya Edeleva, Mariano Asteasuain, Paul H. M. Van Steenberge, Dagmar R. D’hooge","doi":"10.1021/acs.iecr.5c00639","DOIUrl":null,"url":null,"abstract":"Kinetic Monte Carlo (<i>k</i>MC) modeling is a widely used stochastic solver for simulating the time evolution of (bio)chemical processes. Its main advantage is molecule-by-molecule tracking, enabling detailed analysis of polymer kinetic systems at the distribution level, e.g., chain length or molar mass distribution (CLD or MMD). However, comparing <i>k</i>MC models between developers and groups remains less trivial because of the diverse implementation strategies employed. We therefore present <i>k</i>MC benchmark cases for free radical polymerization (FRP) and nitroxide mediated polymerization (NMP) with linear polymers, following universal guidelines. Two independent groups validate these guidelines across variations in programming language, random number generators, memory use, and data handling, with a specific emphasis on automated control volume calculation, allowing converged results based on a signal-to-noise ratio (SNR) calculation. Our work facilitates <i>k</i>MC adoption and fosters collaboration among researchers in the field.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmark Cases and Guidelines for Kinetic Monte Carlo Simulations with Linear Polymers\",\"authors\":\"Tomás Romero Pietrafesa, Alessandro D. Trigilio, Yoshi W. Marien, Pablo Reyes, Mariya Edeleva, Mariano Asteasuain, Paul H. M. Van Steenberge, Dagmar R. D’hooge\",\"doi\":\"10.1021/acs.iecr.5c00639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinetic Monte Carlo (<i>k</i>MC) modeling is a widely used stochastic solver for simulating the time evolution of (bio)chemical processes. Its main advantage is molecule-by-molecule tracking, enabling detailed analysis of polymer kinetic systems at the distribution level, e.g., chain length or molar mass distribution (CLD or MMD). However, comparing <i>k</i>MC models between developers and groups remains less trivial because of the diverse implementation strategies employed. We therefore present <i>k</i>MC benchmark cases for free radical polymerization (FRP) and nitroxide mediated polymerization (NMP) with linear polymers, following universal guidelines. Two independent groups validate these guidelines across variations in programming language, random number generators, memory use, and data handling, with a specific emphasis on automated control volume calculation, allowing converged results based on a signal-to-noise ratio (SNR) calculation. Our work facilitates <i>k</i>MC adoption and fosters collaboration among researchers in the field.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.5c00639\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.5c00639","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

动力学蒙特卡罗(kMC)模型是一种广泛应用于模拟(生物)化学过程时间演化的随机求解器。它的主要优点是逐分子跟踪,能够在分布水平上详细分析聚合物动力学系统,例如链长或摩尔质量分布(CLD或MMD)。然而,由于采用了不同的实现策略,在开发人员和团队之间比较kMC模型并不是微不足道的。因此,我们提出了kMC基准案例自由基聚合(FRP)和氮氧化物介导的聚合(NMP)与线性聚合物,遵循普遍的指导方针。两个独立的小组在编程语言、随机数生成器、内存使用和数据处理方面验证了这些指导方针,特别强调了自动控制体积计算,允许基于信噪比(SNR)计算的收敛结果。我们的工作促进了kMC的采用,并促进了该领域研究人员之间的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Benchmark Cases and Guidelines for Kinetic Monte Carlo Simulations with Linear Polymers

Benchmark Cases and Guidelines for Kinetic Monte Carlo Simulations with Linear Polymers
Kinetic Monte Carlo (kMC) modeling is a widely used stochastic solver for simulating the time evolution of (bio)chemical processes. Its main advantage is molecule-by-molecule tracking, enabling detailed analysis of polymer kinetic systems at the distribution level, e.g., chain length or molar mass distribution (CLD or MMD). However, comparing kMC models between developers and groups remains less trivial because of the diverse implementation strategies employed. We therefore present kMC benchmark cases for free radical polymerization (FRP) and nitroxide mediated polymerization (NMP) with linear polymers, following universal guidelines. Two independent groups validate these guidelines across variations in programming language, random number generators, memory use, and data handling, with a specific emphasis on automated control volume calculation, allowing converged results based on a signal-to-noise ratio (SNR) calculation. Our work facilitates kMC adoption and fosters collaboration among researchers in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信