磁单极子搜索的下一个前沿

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
O. Gould, I. Ostrovskiy, A. Upreti
{"title":"磁单极子搜索的下一个前沿","authors":"O. Gould, I. Ostrovskiy, A. Upreti","doi":"10.1103/physrevd.111.102004","DOIUrl":null,"url":null,"abstract":"Magnetic monopoles (MMs) are well-motivated hypothetical particles whose discovery would symmetrize Maxwell equations, explain quantization of electric charge, and probe the gauge structure of the unified theory. Recent models predict MMs with low masses, reinvigorating searches at colliders. However, most theories predict composite MMs, whose production in parton-parton collisions is expected to be suppressed. The Schwinger process, whereby MM pairs tunnel through the vacuum barrier in the presence of a strong magnetic field, is not subject to this limitation. Additionally, the Schwinger cross section can be calculated nonperturbatively. Together, these make it a golden channel for low-mass MM searches. We investigate the Schwinger production of MMs in heavy-ion collisions at future colliders, in collisions of cosmic rays with the atmosphere, and in decay of magnetic fields of cosmic origin. We find that a next-generation collider would provide the best sensitivity, allowing one to discover or exclude MMs with TeV-scale masses. At the same time, exploiting the infrastructure of industrial ore extraction and Antarctic ice drilling could advance the field at a faster timescale and with only a modest investment. In particular, we show with detailed calculations that the proposed experiments will be sensitive to fluxes of low-mass MMs as low as a few units of 10</a:mn></a:mrow>−</a:mo>22</a:mn></a:mrow></a:msup></a:mtext></a:mtext>cm</a:mi></a:mrow>−</a:mo>2</a:mn></a:mrow></a:msup></a:mtext>s</a:mi></a:mrow>−</a:mo>1</a:mn></a:mrow></a:msup></a:mtext>sr</a:mi></a:mrow>−</a:mo>1</a:mn></a:mrow></a:msup></a:mrow></a:mrow></a:mrow></a:math> in a wide range of Lorentz factors. We also propose deploying dedicated MM detectors in conjunction with cosmic ray observatories to directly investigate if the unexplained, highest-energy cosmic rays are MMs. Together, the proposed efforts would define the field of MM searches in the next decades. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"43 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next frontiers for magnetic monopole searches\",\"authors\":\"O. Gould, I. Ostrovskiy, A. Upreti\",\"doi\":\"10.1103/physrevd.111.102004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic monopoles (MMs) are well-motivated hypothetical particles whose discovery would symmetrize Maxwell equations, explain quantization of electric charge, and probe the gauge structure of the unified theory. Recent models predict MMs with low masses, reinvigorating searches at colliders. However, most theories predict composite MMs, whose production in parton-parton collisions is expected to be suppressed. The Schwinger process, whereby MM pairs tunnel through the vacuum barrier in the presence of a strong magnetic field, is not subject to this limitation. Additionally, the Schwinger cross section can be calculated nonperturbatively. Together, these make it a golden channel for low-mass MM searches. We investigate the Schwinger production of MMs in heavy-ion collisions at future colliders, in collisions of cosmic rays with the atmosphere, and in decay of magnetic fields of cosmic origin. We find that a next-generation collider would provide the best sensitivity, allowing one to discover or exclude MMs with TeV-scale masses. At the same time, exploiting the infrastructure of industrial ore extraction and Antarctic ice drilling could advance the field at a faster timescale and with only a modest investment. In particular, we show with detailed calculations that the proposed experiments will be sensitive to fluxes of low-mass MMs as low as a few units of 10</a:mn></a:mrow>−</a:mo>22</a:mn></a:mrow></a:msup></a:mtext></a:mtext>cm</a:mi></a:mrow>−</a:mo>2</a:mn></a:mrow></a:msup></a:mtext>s</a:mi></a:mrow>−</a:mo>1</a:mn></a:mrow></a:msup></a:mtext>sr</a:mi></a:mrow>−</a:mo>1</a:mn></a:mrow></a:msup></a:mrow></a:mrow></a:mrow></a:math> in a wide range of Lorentz factors. We also propose deploying dedicated MM detectors in conjunction with cosmic ray observatories to directly investigate if the unexplained, highest-energy cosmic rays are MMs. Together, the proposed efforts would define the field of MM searches in the next decades. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.102004\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.102004","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

磁单极子(mm)是一种被激发良好的假设粒子,它的发现将使麦克斯韦方程对称,解释电荷的量子化,探索统一理论的规范结构。最近的模型预测mm质量较低,重新激活了对撞机的搜索。然而,大多数理论预测复合mm,其产生在部分-部分碰撞预计被抑制。在施温格过程中,MM对在强磁场的存在下穿过真空势垒,不受此限制。此外,施温格截面可以非摄动计算。总之,这些使它成为低质量MM搜索的黄金通道。我们研究了未来对撞机重离子碰撞、宇宙射线与大气碰撞以及宇宙起源磁场衰变中mm的Schwinger产生。我们发现下一代对撞机将提供最好的灵敏度,允许人们发现或排除具有tev级质量的mm。与此同时,利用工业矿石开采和南极冰层钻探的基础设施,可以以更快的速度推进该领域,而且只需要很少的投资。特别是,我们用详细的计算表明,所提出的实验将对低质量mm的通量敏感,低至10−22cm−2s−1sr−1的几个单位,在广泛的洛伦兹因子范围内。我们还建议与宇宙射线天文台一起部署专用的MM探测器,以直接调查无法解释的最高能量宇宙射线是否为MM。总之,这些提议的努力将定义未来几十年的MM搜索领域。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next frontiers for magnetic monopole searches
Magnetic monopoles (MMs) are well-motivated hypothetical particles whose discovery would symmetrize Maxwell equations, explain quantization of electric charge, and probe the gauge structure of the unified theory. Recent models predict MMs with low masses, reinvigorating searches at colliders. However, most theories predict composite MMs, whose production in parton-parton collisions is expected to be suppressed. The Schwinger process, whereby MM pairs tunnel through the vacuum barrier in the presence of a strong magnetic field, is not subject to this limitation. Additionally, the Schwinger cross section can be calculated nonperturbatively. Together, these make it a golden channel for low-mass MM searches. We investigate the Schwinger production of MMs in heavy-ion collisions at future colliders, in collisions of cosmic rays with the atmosphere, and in decay of magnetic fields of cosmic origin. We find that a next-generation collider would provide the best sensitivity, allowing one to discover or exclude MMs with TeV-scale masses. At the same time, exploiting the infrastructure of industrial ore extraction and Antarctic ice drilling could advance the field at a faster timescale and with only a modest investment. In particular, we show with detailed calculations that the proposed experiments will be sensitive to fluxes of low-mass MMs as low as a few units of 10−22cm−2s−1sr−1 in a wide range of Lorentz factors. We also propose deploying dedicated MM detectors in conjunction with cosmic ray observatories to directly investigate if the unexplained, highest-energy cosmic rays are MMs. Together, the proposed efforts would define the field of MM searches in the next decades. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信