Ru单原子/纳米粒子双位点催化剂接力催化甲苯加氢研究

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-08 DOI:10.1002/smll.202501665
Lingxia Zheng, Lubo Zhang, Jiawei Bai, Yifeng Zhang, Sentao Wei, Chenlong Zhang, Guojing Zhang, Yongbing Ma, Xin Wang, Yi Jia
{"title":"Ru单原子/纳米粒子双位点催化剂接力催化甲苯加氢研究","authors":"Lingxia Zheng,&nbsp;Lubo Zhang,&nbsp;Jiawei Bai,&nbsp;Yifeng Zhang,&nbsp;Sentao Wei,&nbsp;Chenlong Zhang,&nbsp;Guojing Zhang,&nbsp;Yongbing Ma,&nbsp;Xin Wang,&nbsp;Yi Jia","doi":"10.1002/smll.202501665","DOIUrl":null,"url":null,"abstract":"<p>The methylcyclohexane-toluene-hydrogen (MTH) cycle is one of the most promising liquid organic hydrogen carrier (LOHC) systems. Despite the good performance of carbon-supported Pt nanoparticles, the drawbacks of noble metals, such as high cost and limited availability, hinder the industrial applications of these catalyst technologies. Herein, a ruthenium single-atom/nanoparticle (Ru SA/NP) dual-site electrocatalyst is developed with low metal loadings and notable electrochemical hydrogenation (ECH) efficiency of toluene (TL) to methylcyclohexane (MCH) in an electrochemical microreactor. The results reveal that within a wide potential window (∆V = 500 mV), the optimal catalyst Ru4-CN exhibits ≈100% Faraday efficiency (FE), high MCH selectivity, and significant inhibition of the hydrogen evolution reaction (HER). At a cell voltage of 2.0 V, the yield of MCH reaches 657.12 µmol h<sup>−1</sup> mg<sub>Ru</sub><sup>−1</sup>, which is ≈28 times higher than that of commercial Ru/C catalyst. Experimental and theoretical analyses indicate that TL preferentially adsorbs on Ru NP, while hydrogen atoms adsorb on Ru-SA to form H<sup>*</sup>, which is then delivered to Ru-NP to hydrogenate TL. This work brings forth a special design of Ru SA/NP dual-sites on the electrochemical hydrogenation of organic substrates and sheds light on the structure-activity relationships for future studies.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 24","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Electrochemical Hydrogenation of Toluene by Relay Catalysis Over a Ru Single Atom/Nanoparticle Dual-Site Catalyst\",\"authors\":\"Lingxia Zheng,&nbsp;Lubo Zhang,&nbsp;Jiawei Bai,&nbsp;Yifeng Zhang,&nbsp;Sentao Wei,&nbsp;Chenlong Zhang,&nbsp;Guojing Zhang,&nbsp;Yongbing Ma,&nbsp;Xin Wang,&nbsp;Yi Jia\",\"doi\":\"10.1002/smll.202501665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The methylcyclohexane-toluene-hydrogen (MTH) cycle is one of the most promising liquid organic hydrogen carrier (LOHC) systems. Despite the good performance of carbon-supported Pt nanoparticles, the drawbacks of noble metals, such as high cost and limited availability, hinder the industrial applications of these catalyst technologies. Herein, a ruthenium single-atom/nanoparticle (Ru SA/NP) dual-site electrocatalyst is developed with low metal loadings and notable electrochemical hydrogenation (ECH) efficiency of toluene (TL) to methylcyclohexane (MCH) in an electrochemical microreactor. The results reveal that within a wide potential window (∆V = 500 mV), the optimal catalyst Ru4-CN exhibits ≈100% Faraday efficiency (FE), high MCH selectivity, and significant inhibition of the hydrogen evolution reaction (HER). At a cell voltage of 2.0 V, the yield of MCH reaches 657.12 µmol h<sup>−1</sup> mg<sub>Ru</sub><sup>−1</sup>, which is ≈28 times higher than that of commercial Ru/C catalyst. Experimental and theoretical analyses indicate that TL preferentially adsorbs on Ru NP, while hydrogen atoms adsorb on Ru-SA to form H<sup>*</sup>, which is then delivered to Ru-NP to hydrogenate TL. This work brings forth a special design of Ru SA/NP dual-sites on the electrochemical hydrogenation of organic substrates and sheds light on the structure-activity relationships for future studies.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 24\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501665\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501665","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

甲基环己烷-甲苯-氢(MTH)循环是最有前途的有机液态氢载体(LOHC)体系之一。尽管碳负载Pt纳米颗粒具有良好的性能,但贵金属的缺点,如高成本和有限的可用性,阻碍了这些催化剂技术的工业应用。在电化学微反应器中,研制了钌单原子/纳米颗粒(Ru SA/NP)双位点电催化剂,具有低金属负荷量和显著的甲苯(TL)电化学加氢(ECH)制甲基环己烷(MCH)效率。结果表明,在较宽的电位窗口(∆V = 500 mV)内,最佳催化剂Ru4-CN具有≈100%的法拉第效率(FE)、较高的MCH选择性和明显的析氢抑制作用。在电池电压为2.0 V时,MCH的产率达到657.12µmol h−1 mgRu−1,比商用Ru/C催化剂的产率提高了约28倍。实验和理论分析表明,TL优先吸附Ru NP,而氢原子在Ru-SA上吸附形成H*, H*被传递给Ru-NP使TL加氢。本研究提出了Ru SA/NP双位点在有机底物电化学加氢上的特殊设计,为今后的研究提供了结构-活性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Electrochemical Hydrogenation of Toluene by Relay Catalysis Over a Ru Single Atom/Nanoparticle Dual-Site Catalyst

Efficient Electrochemical Hydrogenation of Toluene by Relay Catalysis Over a Ru Single Atom/Nanoparticle Dual-Site Catalyst

Efficient Electrochemical Hydrogenation of Toluene by Relay Catalysis Over a Ru Single Atom/Nanoparticle Dual-Site Catalyst

The methylcyclohexane-toluene-hydrogen (MTH) cycle is one of the most promising liquid organic hydrogen carrier (LOHC) systems. Despite the good performance of carbon-supported Pt nanoparticles, the drawbacks of noble metals, such as high cost and limited availability, hinder the industrial applications of these catalyst technologies. Herein, a ruthenium single-atom/nanoparticle (Ru SA/NP) dual-site electrocatalyst is developed with low metal loadings and notable electrochemical hydrogenation (ECH) efficiency of toluene (TL) to methylcyclohexane (MCH) in an electrochemical microreactor. The results reveal that within a wide potential window (∆V = 500 mV), the optimal catalyst Ru4-CN exhibits ≈100% Faraday efficiency (FE), high MCH selectivity, and significant inhibition of the hydrogen evolution reaction (HER). At a cell voltage of 2.0 V, the yield of MCH reaches 657.12 µmol h−1 mgRu−1, which is ≈28 times higher than that of commercial Ru/C catalyst. Experimental and theoretical analyses indicate that TL preferentially adsorbs on Ru NP, while hydrogen atoms adsorb on Ru-SA to form H*, which is then delivered to Ru-NP to hydrogenate TL. This work brings forth a special design of Ru SA/NP dual-sites on the electrochemical hydrogenation of organic substrates and sheds light on the structure-activity relationships for future studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信