{"title":"六氰高铁酸镍泡沫电极的吸附选择性及影响因素:从伪海水中提取98%的钾组分溶液","authors":"Takeo Tomiyama , Masakuni Yamaguchi , Yuta Shudo , Tohru Kawamoto , Hisashi Tanaka","doi":"10.1016/j.watres.2025.123796","DOIUrl":null,"url":null,"abstract":"<div><div>Metal hexacyanoferrates are promising adsorbents for desalination and concentration of seawater and wastewater, because of a high capacity for selective cation intercalation into their three-dimensional lattice through redox reactions. The ratio between fractional quantities of cations removed from a solution is a metric commonly used to evaluate adsorption selectivity. However, this metric also depends directly on cation concentrations in the adsorption solution, thus on the electrode potential through the reaction yield. Here, we analyzed the adsorption selectivity of nickel hexacyanoferrate (NiHCF) foam electrodes, characterized by high porosity and excellent ion diffusivity, using only the selectivity coefficient for ion exchange, i.e., independently of the electrode potential. We conducted a potassium extraction experiment with three consecutive stages, each comprising first an adsorption then a desorption process. From pseudo-seawater (<em>K</em><sup>+</sup> = 10 mmol/L, Na<sup>+</sup> = 495 mmol/L) as first adsorption solution, we obtained a final desorption solution with a high potassium fraction (98 %; <em>K</em><sup>+</sup> = 123 mmol/L, Na<sup>+</sup> = 3 mmol/L). Temporal concentration variations illustrated the close agreement between measurements and values calculated using only the selectivity coefficient for ion exchange, demonstrating that the adsorption selectivity of NiHCF foam electrodes was primarily influenced by ion exchange reactions, and did not depend on the electrode potential. We also demonstrated the usefulness of our foam electrodes for industrial application through a cyclability assessment and a detailed <em>K</em><sup>+</sup> adsorption selectivity evaluation in synthetic seawater, a more realistic seawater analogue containing not only Na<sup>+</sup> and <em>K</em><sup>+</sup>, but also divalent cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>).</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"283 ","pages":"Article 123796"},"PeriodicalIF":12.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption selectivity of nickel hexacyanoferrate foam electrodes and influencing factors: extraction of a 98 % potassium fraction solution from pseudo-seawater\",\"authors\":\"Takeo Tomiyama , Masakuni Yamaguchi , Yuta Shudo , Tohru Kawamoto , Hisashi Tanaka\",\"doi\":\"10.1016/j.watres.2025.123796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal hexacyanoferrates are promising adsorbents for desalination and concentration of seawater and wastewater, because of a high capacity for selective cation intercalation into their three-dimensional lattice through redox reactions. The ratio between fractional quantities of cations removed from a solution is a metric commonly used to evaluate adsorption selectivity. However, this metric also depends directly on cation concentrations in the adsorption solution, thus on the electrode potential through the reaction yield. Here, we analyzed the adsorption selectivity of nickel hexacyanoferrate (NiHCF) foam electrodes, characterized by high porosity and excellent ion diffusivity, using only the selectivity coefficient for ion exchange, i.e., independently of the electrode potential. We conducted a potassium extraction experiment with three consecutive stages, each comprising first an adsorption then a desorption process. From pseudo-seawater (<em>K</em><sup>+</sup> = 10 mmol/L, Na<sup>+</sup> = 495 mmol/L) as first adsorption solution, we obtained a final desorption solution with a high potassium fraction (98 %; <em>K</em><sup>+</sup> = 123 mmol/L, Na<sup>+</sup> = 3 mmol/L). Temporal concentration variations illustrated the close agreement between measurements and values calculated using only the selectivity coefficient for ion exchange, demonstrating that the adsorption selectivity of NiHCF foam electrodes was primarily influenced by ion exchange reactions, and did not depend on the electrode potential. We also demonstrated the usefulness of our foam electrodes for industrial application through a cyclability assessment and a detailed <em>K</em><sup>+</sup> adsorption selectivity evaluation in synthetic seawater, a more realistic seawater analogue containing not only Na<sup>+</sup> and <em>K</em><sup>+</sup>, but also divalent cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>).</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"283 \",\"pages\":\"Article 123796\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135425007055\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425007055","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Adsorption selectivity of nickel hexacyanoferrate foam electrodes and influencing factors: extraction of a 98 % potassium fraction solution from pseudo-seawater
Metal hexacyanoferrates are promising adsorbents for desalination and concentration of seawater and wastewater, because of a high capacity for selective cation intercalation into their three-dimensional lattice through redox reactions. The ratio between fractional quantities of cations removed from a solution is a metric commonly used to evaluate adsorption selectivity. However, this metric also depends directly on cation concentrations in the adsorption solution, thus on the electrode potential through the reaction yield. Here, we analyzed the adsorption selectivity of nickel hexacyanoferrate (NiHCF) foam electrodes, characterized by high porosity and excellent ion diffusivity, using only the selectivity coefficient for ion exchange, i.e., independently of the electrode potential. We conducted a potassium extraction experiment with three consecutive stages, each comprising first an adsorption then a desorption process. From pseudo-seawater (K+ = 10 mmol/L, Na+ = 495 mmol/L) as first adsorption solution, we obtained a final desorption solution with a high potassium fraction (98 %; K+ = 123 mmol/L, Na+ = 3 mmol/L). Temporal concentration variations illustrated the close agreement between measurements and values calculated using only the selectivity coefficient for ion exchange, demonstrating that the adsorption selectivity of NiHCF foam electrodes was primarily influenced by ion exchange reactions, and did not depend on the electrode potential. We also demonstrated the usefulness of our foam electrodes for industrial application through a cyclability assessment and a detailed K+ adsorption selectivity evaluation in synthetic seawater, a more realistic seawater analogue containing not only Na+ and K+, but also divalent cations (Mg2+, Ca2+).
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.