利用拓扑设计的静电场和带电分子通量的石墨外延自形成单晶阵列。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-09 DOI:10.1021/acsnano.5c01615
Johannes Reiprich,Bardia Aliabadian,Nishchay A Isaac,Leslie Schlag,Theresa Scheler,Feitao Li,Bernd Hähnlein,Gernot Ecke,Jörg Pezoldt,Heiko O Jacobs
{"title":"利用拓扑设计的静电场和带电分子通量的石墨外延自形成单晶阵列。","authors":"Johannes Reiprich,Bardia Aliabadian,Nishchay A Isaac,Leslie Schlag,Theresa Scheler,Feitao Li,Bernd Hähnlein,Gernot Ecke,Jörg Pezoldt,Heiko O Jacobs","doi":"10.1021/acsnano.5c01615","DOIUrl":null,"url":null,"abstract":"The ability to locally engineer semiconducting structures enables the development of next generation nanoscale devices and photonics. Contrary to the widely used selective area epitaxy, an alternative approach for localized single crystal growth on noncrystalline substrates is presented. Individual growth positions are defined by topological design of an electrostatic field above the substrate guiding the material transport of unipolar charged molecules to the nucleation and growth positions. In this way, the topologically designed electric field imprints the geometrical pattern for graphoepitaxial crystallite growth. After nucleation, the growth evolves into vertical growth of three-dimensional high aspect ratio towers tipped with single crystal copper oxide. The demonstrated graphoepitaxial method allows for the facile growth of advanced 3D material structures on noncrystalline substrates.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"36 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphoepitaxial Self-Formation of Single Crystal Arrays Using Topologically Designed Electrostatic Fields and Charged Molecular Fluxes.\",\"authors\":\"Johannes Reiprich,Bardia Aliabadian,Nishchay A Isaac,Leslie Schlag,Theresa Scheler,Feitao Li,Bernd Hähnlein,Gernot Ecke,Jörg Pezoldt,Heiko O Jacobs\",\"doi\":\"10.1021/acsnano.5c01615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to locally engineer semiconducting structures enables the development of next generation nanoscale devices and photonics. Contrary to the widely used selective area epitaxy, an alternative approach for localized single crystal growth on noncrystalline substrates is presented. Individual growth positions are defined by topological design of an electrostatic field above the substrate guiding the material transport of unipolar charged molecules to the nucleation and growth positions. In this way, the topologically designed electric field imprints the geometrical pattern for graphoepitaxial crystallite growth. After nucleation, the growth evolves into vertical growth of three-dimensional high aspect ratio towers tipped with single crystal copper oxide. The demonstrated graphoepitaxial method allows for the facile growth of advanced 3D material structures on noncrystalline substrates.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c01615\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c01615","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本地工程半导体结构的能力使下一代纳米级器件和光子学的发展成为可能。与广泛使用的选择性区域外延相反,提出了一种在非晶体衬底上局部生长单晶的替代方法。单个生长位置由基板上方的静电场的拓扑设计来定义,该静电场引导单极带电分子的材料传输到成核和生长位置。通过这种方式,拓扑设计的电场印记了石墨外延晶生长的几何图案。成核后,生长演变为以单晶氧化铜为尖端的三维高纵横比塔的垂直生长。所演示的石墨外延方法允许在非晶体衬底上轻松生长先进的3D材料结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphoepitaxial Self-Formation of Single Crystal Arrays Using Topologically Designed Electrostatic Fields and Charged Molecular Fluxes.
The ability to locally engineer semiconducting structures enables the development of next generation nanoscale devices and photonics. Contrary to the widely used selective area epitaxy, an alternative approach for localized single crystal growth on noncrystalline substrates is presented. Individual growth positions are defined by topological design of an electrostatic field above the substrate guiding the material transport of unipolar charged molecules to the nucleation and growth positions. In this way, the topologically designed electric field imprints the geometrical pattern for graphoepitaxial crystallite growth. After nucleation, the growth evolves into vertical growth of three-dimensional high aspect ratio towers tipped with single crystal copper oxide. The demonstrated graphoepitaxial method allows for the facile growth of advanced 3D material structures on noncrystalline substrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信