可持续和经济高效的氢气生产使用铂簇在最低负荷。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hongliang Zeng,Zheng Chen,Qiu Jiang,Qingtian Zhong,Yuan Ji,Yizhen Chen,Jiawei Li,Chunxiao Liu,Runhao Zhang,Jialin Tang,Xiaoxia Xiong,Zhongyue Zhang,Zhaoyang Chen,Yizhou Dai,Chengbo Li,Yinfang Chen,Donghao Zhao,Xu Li,Tingting Zheng,Xin Xu,Chuan Xia
{"title":"可持续和经济高效的氢气生产使用铂簇在最低负荷。","authors":"Hongliang Zeng,Zheng Chen,Qiu Jiang,Qingtian Zhong,Yuan Ji,Yizhen Chen,Jiawei Li,Chunxiao Liu,Runhao Zhang,Jialin Tang,Xiaoxia Xiong,Zhongyue Zhang,Zhaoyang Chen,Yizhou Dai,Chengbo Li,Yinfang Chen,Donghao Zhao,Xu Li,Tingting Zheng,Xin Xu,Chuan Xia","doi":"10.1038/s41467-025-59450-6","DOIUrl":null,"url":null,"abstract":"Proton exchange membrane water electrolysis stands as a promising technology for sustainable hydrogen production, although its viability hinges on minimizing platinum (Pt) usage without sacrificing catalytic efficiency. Central to this challenge is enhancing the intrinsic activity of Pt while ensuring the stability of the catalyst. We herein present a Mo2TiC2 MXene-supported Pt nanocluster catalyst (Mo2TiC2-PtNC) that requires a minimal Pt content (36 μg cm-2) to function, yet remains highly active and stable. Operando spectroscopy and theoretical simulation provide evidence for anomalous charge transfer from the MXene substrate to PtNC, thus generating highly efficient electron-rich Pt sites for robust hydrogen evolution. When incorporated into a proton exchange membrane electrolyzer, the catalyst affords more than 8700 h at 200 mA cm-2 under ambient temperature with a decay rate of just 2.2 μV h-1. All the performance metrics of the present Mo2TiC2-PtNC catalysts are on par with or even surpass those of current hydrogen evolution electrocatalysts under identical operation conditions, thereby challenging the monopoly of high-loading Pt/C-20% in the current electrolyzer design.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"4314"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable and cost-efficient hydrogen production using platinum clusters at minimal loading.\",\"authors\":\"Hongliang Zeng,Zheng Chen,Qiu Jiang,Qingtian Zhong,Yuan Ji,Yizhen Chen,Jiawei Li,Chunxiao Liu,Runhao Zhang,Jialin Tang,Xiaoxia Xiong,Zhongyue Zhang,Zhaoyang Chen,Yizhou Dai,Chengbo Li,Yinfang Chen,Donghao Zhao,Xu Li,Tingting Zheng,Xin Xu,Chuan Xia\",\"doi\":\"10.1038/s41467-025-59450-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton exchange membrane water electrolysis stands as a promising technology for sustainable hydrogen production, although its viability hinges on minimizing platinum (Pt) usage without sacrificing catalytic efficiency. Central to this challenge is enhancing the intrinsic activity of Pt while ensuring the stability of the catalyst. We herein present a Mo2TiC2 MXene-supported Pt nanocluster catalyst (Mo2TiC2-PtNC) that requires a minimal Pt content (36 μg cm-2) to function, yet remains highly active and stable. Operando spectroscopy and theoretical simulation provide evidence for anomalous charge transfer from the MXene substrate to PtNC, thus generating highly efficient electron-rich Pt sites for robust hydrogen evolution. When incorporated into a proton exchange membrane electrolyzer, the catalyst affords more than 8700 h at 200 mA cm-2 under ambient temperature with a decay rate of just 2.2 μV h-1. All the performance metrics of the present Mo2TiC2-PtNC catalysts are on par with or even surpass those of current hydrogen evolution electrocatalysts under identical operation conditions, thereby challenging the monopoly of high-loading Pt/C-20% in the current electrolyzer design.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"4314\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59450-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59450-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜电解是一种很有前途的可持续制氢技术,尽管其可行性取决于在不牺牲催化效率的情况下最大限度地减少铂(Pt)的使用。这一挑战的核心是提高Pt的内在活性,同时确保催化剂的稳定性。我们在此提出了一种Mo2TiC2 mxene负载的Pt纳米簇催化剂(Mo2TiC2- ptnc),该催化剂需要最小的Pt含量(36 μg cm-2)才能发挥作用,但仍保持高活性和稳定性。Operando光谱和理论模拟提供了从MXene底物到PtNC的异常电荷转移的证据,从而产生了高效的富电子Pt位,用于稳健的析氢。当催化剂加入质子交换膜电解槽中时,在室温下,在200 mA cm-2下,催化剂的衰变率仅为2.2 μV h-1,可提供8700 h以上的时间。在相同操作条件下,Mo2TiC2-PtNC催化剂的各项性能指标均与现有析氢电催化剂相当甚至超过,从而挑战了目前电解槽设计中Pt/C-20%高负荷的垄断地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable and cost-efficient hydrogen production using platinum clusters at minimal loading.
Proton exchange membrane water electrolysis stands as a promising technology for sustainable hydrogen production, although its viability hinges on minimizing platinum (Pt) usage without sacrificing catalytic efficiency. Central to this challenge is enhancing the intrinsic activity of Pt while ensuring the stability of the catalyst. We herein present a Mo2TiC2 MXene-supported Pt nanocluster catalyst (Mo2TiC2-PtNC) that requires a minimal Pt content (36 μg cm-2) to function, yet remains highly active and stable. Operando spectroscopy and theoretical simulation provide evidence for anomalous charge transfer from the MXene substrate to PtNC, thus generating highly efficient electron-rich Pt sites for robust hydrogen evolution. When incorporated into a proton exchange membrane electrolyzer, the catalyst affords more than 8700 h at 200 mA cm-2 under ambient temperature with a decay rate of just 2.2 μV h-1. All the performance metrics of the present Mo2TiC2-PtNC catalysts are on par with or even surpass those of current hydrogen evolution electrocatalysts under identical operation conditions, thereby challenging the monopoly of high-loading Pt/C-20% in the current electrolyzer design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信