动作依赖场理论的实践导论

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Manuel de León, Jordi Gaset Rifà, Miguel C. Muñoz-Lecanda, Xavier Rivas, Narciso Román-Roy
{"title":"动作依赖场理论的实践导论","authors":"Manuel de León,&nbsp;Jordi Gaset Rifà,&nbsp;Miguel C. Muñoz-Lecanda,&nbsp;Xavier Rivas,&nbsp;Narciso Román-Roy","doi":"10.1002/prop.70000","DOIUrl":null,"url":null,"abstract":"<p>Action-dependent field theories are systems where the Lagrangian or Hamiltonian depends on new variables that encode the action. They model a larger class of field theories, including non-conservative behavior, while maintaining a well-defined notion of symmetries and a Noether theorem. This makes them especially suited for open systems. After a conceptual introduction, a quick presentation of a new mathematical framework is made for action-dependent field theory: <i>multicontact geometry</i>. The formalism is illustrated with a variety of action-dependent Lagrangians, some of which are regular and others singular, derived from well-known theories whose Lagrangians have been modified to incorporate action-dependent terms. Detailed computations are provided, including the constraint algorithm for the singular cases, in both the Lagrangian and Hamiltonian formalisms. These are the one-dimensional wave equation, the Klein–Gordon equation and the telegrapher equation, Maxwell's electromagnetism, Metric-affine gravity, the heat equation and Burgers' equation, the Bosonic string theory, and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(2+1)$</annotation>\n </semantics></math>-dimensional gravity and Chern–Simons equation.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 5","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Introduction to Action-Dependent Field Theories\",\"authors\":\"Manuel de León,&nbsp;Jordi Gaset Rifà,&nbsp;Miguel C. Muñoz-Lecanda,&nbsp;Xavier Rivas,&nbsp;Narciso Román-Roy\",\"doi\":\"10.1002/prop.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Action-dependent field theories are systems where the Lagrangian or Hamiltonian depends on new variables that encode the action. They model a larger class of field theories, including non-conservative behavior, while maintaining a well-defined notion of symmetries and a Noether theorem. This makes them especially suited for open systems. After a conceptual introduction, a quick presentation of a new mathematical framework is made for action-dependent field theory: <i>multicontact geometry</i>. The formalism is illustrated with a variety of action-dependent Lagrangians, some of which are regular and others singular, derived from well-known theories whose Lagrangians have been modified to incorporate action-dependent terms. Detailed computations are provided, including the constraint algorithm for the singular cases, in both the Lagrangian and Hamiltonian formalisms. These are the one-dimensional wave equation, the Klein–Gordon equation and the telegrapher equation, Maxwell's electromagnetism, Metric-affine gravity, the heat equation and Burgers' equation, the Bosonic string theory, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(2+1)$</annotation>\\n </semantics></math>-dimensional gravity and Chern–Simons equation.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"73 5\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.70000\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.70000","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

动作依赖场论是拉格朗日量或哈密顿量依赖于编码动作的新变量的系统。他们建立了一个更大的场论模型,包括非保守行为,同时保持了一个定义良好的对称概念和诺特定理。这使得它们特别适合于开放系统。在概念介绍后,快速介绍了一个新的数学框架的动作依赖场理论:多接触几何。形式主义用各种动作相关的拉格朗日量来说明,其中一些是正则的,另一些是奇异的,这些拉格朗日量是从著名的理论中推导出来的,这些理论的拉格朗日量已经被修改为包含动作相关的项。在拉格朗日和哈密顿两种形式下给出了详细的计算,包括奇异情况下的约束算法。这些是一维波动方程,Klein-Gordon方程和电报员方程,麦克斯韦电磁学,度量仿射引力,热方程和Burgers方程,玻色子弦理论,以及(2+1)$(2+1)$维引力和chen - simons方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Introduction to Action-Dependent Field Theories

Action-dependent field theories are systems where the Lagrangian or Hamiltonian depends on new variables that encode the action. They model a larger class of field theories, including non-conservative behavior, while maintaining a well-defined notion of symmetries and a Noether theorem. This makes them especially suited for open systems. After a conceptual introduction, a quick presentation of a new mathematical framework is made for action-dependent field theory: multicontact geometry. The formalism is illustrated with a variety of action-dependent Lagrangians, some of which are regular and others singular, derived from well-known theories whose Lagrangians have been modified to incorporate action-dependent terms. Detailed computations are provided, including the constraint algorithm for the singular cases, in both the Lagrangian and Hamiltonian formalisms. These are the one-dimensional wave equation, the Klein–Gordon equation and the telegrapher equation, Maxwell's electromagnetism, Metric-affine gravity, the heat equation and Burgers' equation, the Bosonic string theory, and ( 2 + 1 ) $(2+1)$ -dimensional gravity and Chern–Simons equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信